【Flume】自定义sink kafka,并编译打包jar,unapproval license的问题解决
以下是我的自定义kafka sink插件的pom文件,编译成jar包丢到flume的lib下即可使用
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>flume-sinks</groupId>
<artifactId>cmcc-kafka-sink</artifactId>
<name>Flume Kafka Sink</name>
<version>1.0.0</version>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
</plugin>
</plugins>
</build>
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-sdk</artifactId>
<version>1.5.2</version>
</dependency>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.5.2</version>
</dependency>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-configuration</artifactId>
<version>1.5.2</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.10</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.10</artifactId>
<version>0.8.1.1</version>
</dependency>
</dependencies>
</project>这里取出了parent,也取出了rat plugin,这样就避免了编译时出现的常见错误https://issues.apache.org/jira/browse/FLUME-1372
定义了几个变量
public static final String BATCH_SIZE = "batchSize";
public static final int DEFAULT_BATCH_SIZE = 100;
public static final String PARTITION_KEY_NAME = "cmcc.partition.key";
public static final String ENCODING_KEY_NAME = "cmcc.encoding";
public static final String DEFAULT_ENCODING = "UTF-8";
public static final String CUSTOME_TOPIC_KEY_NAME = "cmcc.topic.name";
public static final String DEFAULT_TOPIC_NAME="CMCC";
自定义sink实现需要继承AbstractSink和实现接口Configurable,并重写部分方法,如下:
package org.apache.flume.cmcc.kafka;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import org.apache.commons.lang.StringUtils;
import org.apache.flume.Channel;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.Transaction;
import org.apache.flume.conf.Configurable;
import org.apache.flume.instrumentation.SinkCounter;
import org.apache.flume.sink.AbstractSink;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.google.common.base.Throwables;
import com.google.common.collect.ImmutableMap;
public class CmccKafkaSink extends AbstractSink implements Configurable {
private static final Logger log = LoggerFactory
.getLogger(CmccKafkaSink.class);
private Properties parameters;
private Producer<String, String> producer;
// private Context context;
private int batchSize;// 一次事务的event数量,整体提交
private List<KeyedMessage<String, String>> messageList;
private SinkCounter sinkCounter;
@Override
public Status process() {
// TODO Auto-generated method stub
Status result = Status.READY;
Channel channel = getChannel();
Transaction transaction = null;
Event event = null;
try {
long processedEvent = 0;
transaction = channel.getTransaction();
transaction.begin();// 事务开始
messageList.clear();
for (; processedEvent < batchSize; processedEvent++) {
event = channel.take();// 从channel取出一个事件
if (event == null) {
result = Status.BACKOFF;
break;
}
sinkCounter.incrementEventDrainAttemptCount();
// Map<String, String> headers = event.getHeaders();
String partitionKey = parameters
.getProperty(Constants.PARTITION_KEY_NAME);
String topic = StringUtils.defaultIfEmpty(parameters
.getProperty(Constants.CUSTOME_TOPIC_KEY_NAME),
Constants.DEFAULT_TOPIC_NAME);
String encoding = StringUtils.defaultIfEmpty(
parameters.getProperty(Constants.ENCODING_KEY_NAME),
Constants.DEFAULT_ENCODING);
byte[] eventBody = event.getBody();
String eventData = new String(eventBody, encoding);
KeyedMessage<String, String> data = null;
if (StringUtils.isEmpty(partitionKey)) {
data = new KeyedMessage<String, String>(topic, eventData);
} else {
data = new KeyedMessage<String, String>(topic,
partitionKey, eventData);
}
messageList.add(data);
log.debug("Add data [" + eventData
+ "] into messageList,position:" + processedEvent);
}
if (processedEvent == 0) {
sinkCounter.incrementBatchEmptyCount();
result = Status.BACKOFF;
} else {
if (processedEvent < batchSize) {
sinkCounter.incrementBatchUnderflowCount();
} else {
sinkCounter.incrementBatchCompleteCount();
}
sinkCounter.addToEventDrainAttemptCount(processedEvent);
producer.send(messageList);
log.debug("Send MessageList to Kafka: [ message List size = "
+ messageList.size() + ",processedEvent number = "
+ processedEvent + "] ");
}
transaction.commit();// batchSize个事件处理完成,一次事务提交
sinkCounter.addToEventDrainSuccessCount(processedEvent);
result = Status.READY;
} catch (Exception e) {
String errorMsg = "Failed to publish events !";
log.error(errorMsg, e);
e.printStackTrace();
result = Status.BACKOFF;
if (transaction != null) {
try {
transaction.rollback();
log.debug("transaction rollback success !");
} catch (Exception ex) {
log.error(errorMsg, ex);
throw Throwables.propagate(ex);
}
}
// throw new EventDeliveryException(errorMsg, e);
} finally {
if (transaction != null) {
transaction.close();
}
}
return result;
}
@Override
public synchronized void start() {
// TODO Auto-generated method stub
log.info("Starting {}...", this);
sinkCounter.start();
super.start();
ProducerConfig config = new ProducerConfig(this.parameters);
this.producer = new Producer<String, String>(config);
sinkCounter.incrementConnectionCreatedCount();
}
@Override
public synchronized void stop() {
// TODO Auto-generated method stub
log.debug("Cmcc Kafka sink {} stopping...", getName());
sinkCounter.stop();
producer.close();
sinkCounter.incrementConnectionClosedCount();
}
@Override
public void configure(Context context) {
// TODO Auto-generated method stub
ImmutableMap<String, String> props = context.getParameters();
batchSize = context.getInteger(Constants.BATCH_SIZE,
Constants.DEFAULT_BATCH_SIZE);
messageList = new ArrayList<KeyedMessage<String, String>>(batchSize);
parameters = new Properties();
for (String key : props.keySet()) {
String value = props.get(key);
this.parameters.put(key, value);
}
if (sinkCounter == null) {
sinkCounter = new SinkCounter(getName());
}
}
}
以上sink同时支持了flume的内部监控
这里为了提高性能,添加了batchSize的概念,也就减少了事务提交的次数
当然当通道中已经没有event了,这时候就将之前处理的event都提交了
下面看配置
a1.sinks.k1.type=org.apache.flume.cmcc.kafka.CmccKafkaSink
a1.sinks.k1.metadata.broker.list=192.168.11.174:9092
a1.sinks.k1.partition.key=0
a1.sinks.k1.partitioner.class=org.apache.flume.cmcc.kafka.CmccPartition
a1.sinks.k1.serializer.class=kafka.serializer.StringEncoder
a1.sinks.k1.request.required.acks=0
a1.sinks.k1.max.message.size=1000000
a1.sinks.k1.cmcc.encoding=UTF-8
a1.sinks.k1.cmcc.topic.name=CMCC
a1.sinks.k1.producer.type=sync
a1.sinks.k1.serializer.class=kafka.serializer.StringEncoder
a1.sinks.k1.batchSize=100这里我们看到,有些属性,我们在Constants中并没有定义,这是如何读取的呢,我们来看下kafka的源码就知道了:
private ProducerConfig(VerifiableProperties props)
{
this.props = props;
super();
kafka.producer.async.AsyncProducerConfig.class.$init$(this);
SyncProducerConfigShared.class.$init$(this);
brokerList = props.getString("metadata.broker.list");
partitionerClass = props.getString("partitioner.class", "kafka.producer.DefaultPartitioner");
producerType = props.getString("producer.type", "sync");
String prop;
compressionCodec = liftedTree1$1(prop = props.getString("compression.codec", NoCompressionCodec$.MODULE$.name()));
Object _tmp = null;
compressedTopics = Utils$.MODULE$.parseCsvList(props.getString("compressed.topics", null));
messageSendMaxRetries = props.getInt("message.send.max.retries", 3);
retryBackoffMs = props.getInt("retry.backoff.ms", 100);
topicMetadataRefreshIntervalMs = props.getInt("topic.metadata.refresh.interval.ms", 600000);
ProducerConfig$.MODULE$.validate(this);
}
kafka的源码在实例化ProducerConfig的时候会读取配置文件中的kafka配置信息的。
页:
[1]