10477777 发表于 2015-12-23 15:45:49

armlinux学习笔记--IIS音频驱动程序分析

//*******************************************************
//* 2009.8.23
//*******************************************************
IISCON = (IISCON_TX_DMA /* Transmit DMA service request */
|IISCON_RX_IDLE /* Receive Channel idle */
|IISCON_PRESCALE); /* IIS Prescaler Enable */
设置IIS 控制寄存器,参考S3C2410 芯片datasheet 中关于IIS 总线接口的章节,具体设置参数如下:
IISCON_TX_DMA = 1sleepers + 1;
sem->sleepers = 0;
/*
* Add "everybody else" and us into it. They aren't
* playing, because we own the spinlock.
*/
if (!atomic_add_negative(sleepers, &sem->count))
wake_up(&sem->wait);
spin_unlock_irqrestore(&semaphore_lock, flags);
return 1;
}
这里不再进一步深入说明。  若应用程序在调用write 函数时没有加入了O_NONBLOCK 参数,即表示采用阻塞的文件IO方式,则会调用down_interruptible 函数来获得信号量sem。该函数将把sem 的值减1,如果信号量sem 的值非负,就直接返回,否则调用者将被挂起,直到别的任务释放该信号量才能继续运行。down_interruptible 函数能被信号打断,因此该函数有返回值来区分是正常返回还是被信号中断,如果返回0,表示获得信号量正常返回,如果被信号打断,返回-EINTR。该函数与相关函数在一篇《Linux内核的同步机制》中有详细说明。
  在/kernel/include/asm-arm/semaphore.h 文件中:
/*
* This is ugly, but we want the default case to fall through.
* "__down_interruptible" is the actual routine that waits...
*/
static inline int down_interruptible (struct semaphore * sem)
{
#if WAITQUEUE_DEBUG
CHECK_MAGIC(sem->__magic);
#endif
return __down_op_ret(sem, __down_interruptible_failed);
}
函数__down_op_ret 在上面已经有过说明。
在/kernel/arch/arm/kernel/semaphore.c 文件中:
__down_interruptible_failed: /n/
stmfd sp!, {r0 - r3, lr} /n/
mov r0, ip /n/
bl __down_interruptible /n/
mov ip, r0 /n/
ldmfd sp!, {r0 - r3, pc}^ /n/
这里又调用了__down_interruptible 函数。
int __down_interruptible(struct semaphore * sem)
这里不再进一步深入说明。
  if (audio_channels == 2) {
chunksize = s->fragsize - b->size;
if (chunksize > count)
chunksize = count;
DPRINTK("write %d to %d/n", chunksize, s->buf_idx);
if (copy_from_user(b->start + b->size, buffer, chunksize)) {
up(&b->sem);
return -EFAULT;
}
b->size += chunksize;
}
下面继续对音频通道数量进行判断,如果音频通道数为先前打开设备文件时设的2通道,则进入执行。
  //*******************************************************
//* 2007.7.11
//*******************************************************
对于“chunksize = s->fragsize - b->size”这一句一开始一直不太理解,不知道为什么要将音频缓冲区片大小减去DMA 缓冲区大小作为写入的数据长度,这两个量的大小是一样的,这样一减不是变为0 了吗?现在觉得其实b->size 只是一个缓冲区地址的偏移量,一开始这个偏移量应该为0,这样就不难理解用s->fragsize 作为写入的数据长度。
接下去判断,如果所要写入的数据长度count 小于chunksize 值,那就以count 为准备写入数据的长度。在count 大于chunksize 的情况下,写入的数据长度以一个s->fragsize 大小为单位。
然后调用了copy_from_user 函数将用户空间buffer 里的数据复制到内核空间起始地址为b->start + b->size 的内存中,复制数据长度为chunksize。这里b->start 为指向环形缓冲区中第0个缓冲区地址的内存起始地址(虚拟地址),用这个起始地址加上缓冲区地址的偏移量(0)还是指向第0个缓冲区地址(共8个)的起始地址(虚拟地址)。
若copy_from_user 函数执行成功,则返回0,继续执行将缓冲区地址的偏移量b->size 加上已写入的数据长度chunksize。若copy_from_user 函数执行失败,就调用up 函数释放信号量,并退出写设备文件函数。
else {
chunksize = (s->fragsize - b->size) >> 1;
if (chunksize > count)
chunksize = count;
DPRINTK("write %d to %d/n", chunksize*2, s->buf_idx);
if (copy_from_user_mono_stereo(b->start + b->size,
buffer, chunksize)) {
up(&b->sem);
return -EFAULT;
}
b->size += chunksize*2;
}
如果音频通道数不等于先前打开设备文件时设的2通道,则进入执行。这里暂时先不进行分析,以后再来分析。
buffer += chunksize;
count -= chunksize;
当把一组音频缓冲区片大小的数据写入内存后,用户层的buffer 指针加上已写入数据的长度,即指向了下一组将要写入的数据。所要写入的数据长度count 减去已写入数据的长度,为还要写入数据的长度。
if (b->size < s->fragsize) {
up(&b->sem);
break;
}
若缓冲区地址的偏移量b->size 小于频缓冲区片大小,则调用up 函数释放信号量,并跳出while 大循环。但是一般情况不会进入该条件语句执行。
  s3c2410_dma_queue_buffer(s->dma_ch, (void *) b,
b->dma_addr, b->size, DMA_BUF_WR);
该函数完成了管理DMA 缓冲区的相关数据结构s3c2410_dma_t 和dma_buf_t 进行了设置,并对S3C2410 芯片的DMA 控制器部分的相关寄存器进行了相应配置。传入的参数为DMA 通道号,一个空指针,DMA 缓冲区的物理起始地址,DMA 缓冲区大小,DMA 缓冲区工作模式,这里工作模式为写DMA 缓冲区。
该函数原型在/kernel/arch/arm/mach-s3c2410/dma.c 文件中,会在后面专门进行分析。
b->size = 0;
NEXT_BUF(s, buf);
}
在while 大循环最后将缓冲区地址的偏移量b->size 清零,然后调用宏函数NEXT_BUF 来将当前缓冲区的指针指向环形缓冲区中下一个缓冲区地址处。所以在对DMA 缓冲区进行填写的前后,缓冲区地址的偏移量b->size 都为0。
接着如果要写入的数据长度count 还大于0,则继续在该循环中执行。
#define NEXT_BUF(_s_,_b_) { /
(_s_)->_b_##_idx++; /
(_s_)->_b_##_idx %= (_s_)->nbfrags; /
(_s_)->_b_ = (_s_)->buffers + (_s_)->_b_##_idx; }
该宏函数相当与执行了一下语句:
s->buf_idx++;
s->buf_idx %= s->nbfrags;
s->buf = s->buffers + s->buf_idx;
先将环形缓冲区索引号加一,并取模音频缓冲区片个数(8),这样就得到了绕环递增的环形缓冲区序号。最后将当前缓冲区的指针指向环形缓冲区起始地址加上新的索引号,即指向了环形缓冲区中的下一组缓冲区地址。
if ((buffer - buffer0))
ret = buffer - buffer0;
return ret;
当count 长度的数据都写完后,就退出while 大循环。一开始定义了一个buffer0 的指针指向了buffer 的起始地址,在写数据的过程中,buffer 指针进行过向后移动,而buffer0 指针不变,buffer - buffer0 就得到了总共写入的数据长度,并将该长度值返回。
  ------------------------------------------------------------------------
马上来看一下创建DMA 缓冲区的函数audio_setup_buf:
static int audio_setup_buf(audio_stream_t * s)
if (s->buffers)
return -EBUSY;
若环形缓冲区指针s->buffers 不为空的话,则立即返回。表示已经创建过DMA 缓冲区了,则不再重复创建。
s->nbfrags = audio_nbfrags;
s->fragsize = audio_fragsize;
接着分别将音频缓冲区片数量和音频缓冲区片大小赋值给audio_stream_t 结构中相应的成员,s->nbfrags 音频缓冲区片数量为8,s->fragsize 音频缓冲区片大小为8192。
s->buffers = (audio_buf_t *)
kmalloc(sizeof(audio_buf_t) * s->nbfrags, GFP_KERNEL);

调用kmalloc 函数来申请环形缓冲区所需要的内存空间,返回值为所分配内存空间的起始地址,且为物理地址。再将audio_stream_t 结构的环形缓冲区指针s->buffers 指向转换为audio_buf_t 结构指针的内存起始地址(物理地址)。这里申请的只是结构体所需要的空间容量,而不是DMA 缓冲区。
if (!s->buffers)
goto err;
如果内存空间申请成功,则s->buffers 指针不为空,继续执行,否则直接跳到err 标号处执行。
memset(s->buffers, 0, sizeof(audio_buf_t) * s->nbfrags);
调用memset 函数对刚才分配的那块内存空间进行清零操作。
for (frag = 0; frag < s->nbfrags; frag++)
接着进入一个for 大循环,对连续的s->nbfrags 个音频缓冲区片进行操作。
{
audio_buf_t *b = &s->buffers;
首先又定义了一个audio_buf_t 结构的指针变量指向audio_stream_t 结构变量的各个缓冲区地址s->buffers,其中frag 从0~8,即8个缓冲区组成一个环形缓冲区。
if (!dmasize) {
dmasize = (s->nbfrags - frag) * s->fragsize;
接着进行判断,如果dmasize 为0,则继续执行。这里一开始就定义了dmasize 为0。一开始,先将dmasize 赋值为所需要的最大的缓冲区空间,即(8-0)*8192。
do {
dmabuf = consistent_alloc(GFP_KERNEL|GFP_DMA,
dmasize, &dmaphys);
if (!dmabuf)
dmasize -= s->fragsize;
} while (!dmabuf && dmasize);
下面又进入一个do while 循环,调用consistent_alloc 函数来进行内存分配,该函数在《LCD驱动程序分析》一文中有过详细分析。通过调用该函数来分配先前dmasize 大小的内存空间(所需要的最大的缓冲区空间)。返回两个值,一个是dmabuf,为所分配内存空间的起始地址,为虚拟地址;另一个是dmaphys,也为所分配内存空间的起始地址,为物理地址。
如果返回的dmabuf 值为0,则表示内存没有申请成功,那么要分配的内存空间dmasize 就需要进行减少,减去一个缓冲区片大小,再调用consistent_alloc 函数进行内存分配,知道分配成功或dmasize 为0 才退出循环。
if (!dmabuf)
goto err;
如果最后dmabuf 值还为0,则表示内存没有申请成功,直接跳到err 标号处执行。
b->master = dmasize;
}
接着把所分配的内存大小赋值给b->master 表示内存大小的结构参数。
b->start = dmabuf;
b->dma_addr = dmaphys;
将所分配的内存空间起始地址的虚拟地址赋值给b->start 这个虚拟地址指针,物理地址赋值给b->dma_addr 这个DMA 缓冲区地址。
sema_init(&b->sem, 1);
调用sema_init 函数来初始化一个信号量,将信号量的初值设置为1。
在/kernel/include/asm-arm/semaphore.h 文件中:
static inline void sema_init(struct semaphore *sem, int val)
关于该函数和相关函数的说明可以参考一篇《Linux内核的同步机制》的文档。
dmabuf += s->fragsize;
dmaphys += s->fragsize;
dmasize -= s->fragsize;
}
在for 大循环的最后,将所分配内存起始地址的虚拟地址和物理地址都加上音频缓冲区片的大小,而总的缓冲区空间大小是减去音频缓冲区片的大小。前面两个参数都将作为下一个缓冲区地址audio_buf_t 结构中的虚拟地址指针和DMA 缓冲区地址的参数。
如果dmasize 不为0 的话,在进入下一次循环时,就不会进入do while 循环进行内存空间的分配了。但是如果第一次没有分配到8 个音频缓冲区片大小的内存空间,比如只分配到4 个音频缓冲区片大小的内存空间,则进入第5 次循环时,dmasize 为0 了,那么就会再次进入do while 循环进行内存空间的分配,不过分配的为剩下的4 个音频缓冲区片大小的内存空间。这个函数巧妙的解决了万一一次分配不到连续的8 个音频缓冲区片大小的内存空间,就会按几次来分配较小的连续的内存空间了。
其中b->master 参数只有第0个缓冲区地址有值,为总的缓冲区空间大小,其余缓冲区地址的b->master 都为0。
s->buf_idx = 0;
s->buf = &s->buffers;
return 0;
将环形缓冲区索引号设为0,将当前缓冲区指针指向环形缓冲区的第0个缓冲区地址,然后返回0。
err:
audio_clear_buf(s);
return -ENOMEM;
如果程序跳转到err 标号处,则执行audio_clear_buf 函数来清空输出音频DMA 缓冲区,然后返回出错信息。
  ------------------------------------------------------------------------
分析完了放音的写设备函数,再来看一下录音的读设备函数smdk2410_audio_read:
static ssize_t smdk2410_audio_read(struct file *file, char *buffer,
size_t count, loff_t * ppos)
audio_stream_t *s = &input_stream;
该函数首先又定义了一个audio_stream_t 结构的指针变量指向输入音频缓冲区。
if (ppos != &file->f_pos)
return -ESPIPE;
然后判断如果表示文件当前位置的参数ppos 不等于该文件file 结构里的file->f_pos 文件位置,则返回退出。但实际上ppos 本来就是file->f_pos 的值,所以这一步一般不会出现。
if (!s->buffers) {
int i;

if (audio_setup_buf(s))
return -ENOMEM;

for (i = 0; i < s->nbfrags; i++) {
audio_buf_t *b = s->buf;
down(&b->sem);
s3c2410_dma_queue_buffer(s->dma_ch, (void *) b,
b->dma_addr, s->fragsize, DMA_BUF_RD);
NEXT_BUF(s, buf);
}
}
若指向环形缓冲区的指针s->buffers 为空的话,则会进入执行。首先会调用audio_setup_buf 函数来创建DMA 缓冲区,创建成功则继续执行,否则返回错误并退出。接着进入一个for 循环,对连续s->nbfrags(8)个音频缓冲区片进行操作。重新定义了一个audio_buf_t 结构的指针指向输入音频缓冲区当前缓冲区,并调用down 函数来获取信号量,又调用了s3c2410_dma_queue_buffer 函数完成了管理DMA 缓冲区的相关数据结构s3c2410_dma_t 和dma_buf_t 进行了设置,并对S3C2410 芯片的DMA 控制器部分的相关寄存器进行了相应配置,不过这里工作模式为读DMA 缓冲区。最后调用NEXT_BUF 宏函数来将当前缓冲区的指针指向环形缓冲区中下一个缓冲区地址处。
如果先调用过写设备函数,那么在写设备函数中就已经创建了DMA 缓冲区,再来调用现在的读设备函数时,就不会再进入这里来执行了。
while (count > 0) {
若要读取的字节数大于0,则进入一个while 大循环。
audio_buf_t *b = s->buf;
在大循环一开始就定义了一个audio_buf_t 结构的指针变量指向前面定义的输入音频缓冲区里的当前缓冲区指针。
/* Wait for a buffer to become full */
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
if (down_trylock(&b->sem))
break;
} else {
ret = -ERESTARTSYS;
if (down_interruptible(&b->sem))
break;
}
这里跟写设备函数中一样,根据file->f_flags 与上O_NONBLOCK 值来进行判断,如果O_NONBLOCK 标记被设置,表示采用非阻塞的文件IO方法,则会调用down_trylock 函数来试着获得信号量sem,如果能够立刻获得,它就获得该信号量并返回0,否则,表示不能获得信号量sem,返回值为非0值。该函数与相关函数在一篇《Linux内核的同步机制》中有详细说明。
若没有加入了O_NONBLOCK 参数,即表示采用阻塞的文件IO方式,则会调用down_interruptible 函数来获得信号量sem。该函数将把sem 的值减1,如果信号量sem 的值非负,就直接返回,否则调用者将被挂起,直到别的任务释放该信号量才能继续运行。该函数与相关函数在一篇《Linux内核的同步机制》中有详细说明。
chunksize = b->size;
if (chunksize > count)
chunksize = count;
将缓冲区地址的偏移量b->size 赋值给chunksize,这里b->size 一开始应该为一个DMA 缓冲区片大小,即一个s->fragsize 单位大小,若所要读取数据的长度count 小于chunksize 值,那就以count 为准备读取数据的长度。在count 大于chunksize 的情况下,读取的数据长度以一个s->fragsize 大小为单位。
if (copy_to_user(buffer, b->start + s->fragsize - b->size,
chunksize)) {
up(&b->sem);
return -EFAULT;
}
调用copy_to_user 函数将内存中的数据复制到用户层的buffer 中。这里b->start 为指向环形缓冲区中第0个缓冲区地址的内存起始地址(虚拟地址),加上s->fragsize - b->size(得0),即还是指向第0个缓冲区地址的内存起始地址(虚拟地址)。

b->size -= chunksize;
buffer += chunksize;
count -= chunksize;
当把一组音频缓冲区片大小的数据从内存读取出来后,将缓冲区地址的偏移量b->size 减去已读取数据的长度,即得0。用户层的buffer 指针加上已读取数据的长度,即指向了下一组将要读取的数据。所要写入的数据长度count 减去已读取数据的长度,为还要读取数据的长度。
  if (b->size > 0) {
up(&b->sem);
break;
}
这时缓冲区地址的偏移量b->size 应该为0,如果还是大于0的话就会调用up 函数释放信号量,并跳出while 循环。所以在对DMA 缓冲区进行读取前,缓冲区地址的偏移量b->size 为一个DMA 缓冲区片大小,而读取后,缓冲区地址的偏移量b->size 则为0。
/* Make current buffer available for DMA again */
s3c2410_dma_queue_buffer(s->dma_ch, (void *) b,
b->dma_addr, s->fragsize, DMA_BUF_RD);
调用了s3c2410_dma_queue_buffer 函数完成了管理DMA 缓冲区的相关数据结构s3c2410_dma_t 和dma_buf_t 进行了设置,并对S3C2410 芯片的DMA 控制器部分的相关寄存器进行了相应配置,不过这里工作模式为读DMA 缓冲区。
NEXT_BUF(s, buf);
}
在while 大循环最后调用了NEXT_BUF 宏函数来将当前缓冲区的指针指向环形缓冲区中下一个缓冲区地址处。
if ((buffer - buffer0))
ret = buffer - buffer0;
return ret;
当count 长度的数据都读完后,就退出while 大循环。一开始定义了一个buffer0 的指针指向了buffer 的起始地址,在写数据的过程中,buffer 指针进行过向后移动,而buffer0 指针不变,buffer - buffer0 就得到了总共读取的数据长度,并将该长度值返回。
  //*******************************************************
//* 2007.7.16
//*******************************************************
经过一个双修日的音频驱动调试,对S3C2410 的IIS 控制器和UDA1341 的频率配置有了进一步的了解,对控制放音的写设备文件函数smdk2410_audio_write 也有了更深的认识。下面就来总结一下相关的注意要点。
在S3C2410 芯片与UDA1341 芯片的连线中,关于时钟信号的连线有:I2SLRCLK 到WS,I2SSCLK 到BCK,CDCLK 到SYSCLK。其中CDCLK 为UDA1341 芯片提供系统的同步时钟,也称为编解码时钟,即提供UDA1341 芯片进行音频的A/D,D/A 采样时的采样时钟。而其他2组时钟只是在进行IIS 总线传输数据时提供串行数据的位时钟和左右声道的切换。
CDCLK 是由S3C2410 内部的APH 总线时钟首先经过一个IIS 的模式选择(256fs 或384fs),然后再经过一个IIS 的预分频器分频后得到。S3C2410 主频202M,它的APH 总线频率是202/4=50M,在选择IIS 的主时钟模式为384fs后,经过IIS 的PSR(分频比例因子)得到的由IPSR_A 分出的一个频率用于IIS 时钟输出也可以说是同步,另一个由IPSR_B 分出的频率CDCLK 则直接作为UDA1341 的系统时钟,即编解码时钟。
这里在分频前要进行IIS 的主时钟频率选择(这里选择了384fs)是因为在分频时会根据384 这个系数和采样频率fs 进行分频,最后将系数384 乘以fs 得到CDCLK 时钟输出频率。
而在UDA1341 芯片的初始化中也需要进行系统时钟的设置(512fs,384fs 或256fs),在进行音频的编解码时会根据SYSCLK 输入的系统时钟除以相应的系数,来得到采样频率fs。所以对于S3C2410 芯片的IIS 控制器和UDA1341 芯片,两者相应的CDCLK 和SYSCLK 的时钟频率需要设置一致。我在这里都设为了384fs,在调试过程中,我试着将两者设的不一致,结果就放不出声音了。还有一点要注意,由于预分频值与 384 这个系数和采样频率fs 有关,所以在计算预分频值的函数iispsr_value 中,384 这个系数也要和CDCLK 和SYSCLK 设置的系数一致。如果设置不一致的话,会导致声音播放的太快或太慢。
------------------------------------------------------------------------
9:52 | 添加评论 | 阅读评论 (1) | 发送消息 | 固定链接 | 查看引用通告 (0) | 写入日志 | 嵌入式软件技术
armlinux学习笔记--IIS音频驱动程序分析(1)
  //*******************************************************
//* 2007.7.5
//*******************************************************
Linux 下的IIS 音频驱动程序主要都在/kernel/drivers/sound/s3c2410-uda1341.c 文件中。
  在音频驱动程序中有2个比较重要的结构体:
  typedef struct {
int size; /* buffer size */
char *start; /* point to actual buffer */(内存虚拟地址起始地址)
dma_addr_t dma_addr; /* physical buffer address */(内存物理地址起始地址)
struct semaphore sem; /* down before touching the buffer */
int master; /* owner for buffer allocation, contain size when true */(内存大小)
} audio_buf_t;
  typedef struct {
audio_buf_t *buffers; /* pointer to audio buffer structures */
audio_buf_t *buf; /* current buffer used by read/write */
u_int buf_idx; /* index for the pointer above */
u_int fragsize; /* fragment i.e. buffer size */(音频缓冲区片大小)
u_int nbfrags; /* nbr of fragments */(音频缓冲区片数量)
dmach_t dma_ch; /* DMA channel (channel2 for audio) */
} audio_stream_t;
  这是一个管理多缓冲区的结构体,结构体audio_stream_t 为音频流数据组成了一个环形缓冲区。(audio_buf_t *buffers 同触摸屏驱动中struct TS_DEV 结构中的TS_RET buf 意义一样,都为环形缓冲区)用audio_buf_t 来管理一段内存,在用audio_stream_t 来管理N 个audio_buf_t。
  
  
  音频驱动的file_operations 结构定义如下:
static struct file_operations smdk2410_audio_fops = {
llseek: smdk2410_audio_llseek,
write: smdk2410_audio_write,
read: smdk2410_audio_read,
poll: smdk2410_audio_poll,
ioctl: smdk2410_audio_ioctl,
open: smdk2410_audio_open,
release: smdk2410_audio_release
};
  static struct file_operations smdk2410_mixer_fops = {
ioctl: smdk2410_mixer_ioctl,
open: smdk2410_mixer_open,
release: smdk2410_mixer_release
};
  这里定义了两种类型设备的file_operations 结构,前者是DSP 设备,后者是混频器设备。
  
  
------------------------------------------------------------------------
和往常一样,先来看一下加载驱动模块时的初始化函数:
int __init s3c2410_uda1341_init(void)
该函数首先会初始化I/O 和UDA1341 芯片,然后申请2个DMA 通道用于音频传输。
  local_irq_save(flags);
  调用该宏函数来保存IRQ 中断使能状态,并禁止IRQ 中断。
  在/kernel/include/asm-arm/system.h 文件中:
/* For spinlocks etc */
#define local_irq_save(x) __save_flags_cli(x)
#define local_irq_restore(x) __restore_flags(x)
  在/kernel/include/asm-arm/proc-armo/system.h 文件中:
/*
* Save the current interrupt enable state & disable IRQs
*/
#define __save_flags_cli(x) /
do { /
unsigned long temp; /
__asm__ __volatile__( /
" mov %0, pc @ save_flags_cli/n" /
" orr %1, %0, #0x08000000/n" /
" and %0, %0, #0x0c000000/n" /
" teqp %1, #0/n" /
: "=r" (x), "=r" (temp) /
: /
: "memory"); /
} while (0)
  最后用ARM 汇编指令实现了保存IRQ 和FIQ 的中断使能状态,并禁止IRQ 中断。
  /*
* restore saved IRQ & FIQ state
*/
#define __restore_flags(x) /
do { /
unsigned long temp; /
__asm__ __volatile__( /
" mov %0, pc @ restore_flags/n" /
" bic %0, %0, #0x0c000000/n" /
" orr %0, %0, %1/n" /
" teqp %0, #0/n" /
: "=&r" (temp) /
: "r" (x) /
: "memory"); /
} while (0)
  最后用ARM 汇编指令实现了恢复IRQ 和FIQ 的中断使能状态。
  
/* GPB 4: L3CLOCK, OUTPUT */
set_gpio_ctrl(GPIO_L3CLOCK);
/* GPB 3: L3DATA, OUTPUT */
set_gpio_ctrl(GPIO_L3DATA);
/* GPB 2: L3MODE, OUTPUT */
set_gpio_ctrl(GPIO_L3MODE);
  /* GPE 3: I2SSDI */
set_gpio_ctrl(GPIO_E3 | GPIO_PULLUP_EN | GPIO_MODE_I2SSDI);
/* GPE 0: I2SLRCK */
set_gpio_ctrl(GPIO_E0 | GPIO_PULLUP_EN | GPIO_MODE_I2SSDI);
/* GPE 1: I2SSCLK */
set_gpio_ctrl(GPIO_E1 | GPIO_PULLUP_EN | GPIO_MODE_I2SSCLK);
/* GPE 2: CDCLK */
set_gpio_ctrl(GPIO_E2 | GPIO_PULLUP_EN | GPIO_MODE_CDCLK);
/* GPE 4: I2SSDO */
set_gpio_ctrl(GPIO_E4 | GPIO_PULLUP_EN | GPIO_MODE_I2SSDO);
  
接下来马上设置与UDA1341 芯片相关GPIO 引脚。这里首先将GPB4,GPB3,GPB2 这3个GPIO 引脚设置为输出模式,参考原理图后,得知这3个引脚分别连接UDA1341 芯片的L3CLOCK,L3DATA,L3MODE 这3个引脚,作为这3个信号的输入。
  在/kernel/drivers/sound/s3c2410-uda1341.c 文件中:
#define GPIO_L3CLOCK (GPIO_MODE_OUT | GPIO_PULLUP_DIS | GPIO_B4)
#define GPIO_L3DATA (GPIO_MODE_OUT | GPIO_PULLUP_DIS | GPIO_B3)
#define GPIO_L3MODE (GPIO_MODE_OUT | GPIO_PULLUP_DIS | GPIO_B2)

然后继续设置与IIS 控制器输出信号相关GPIO 引脚。将GPE0~GPE4 这5个引脚设置为IIS 接口的信号模式。需要通过配置GPECON 寄存器来设定该端口管脚的输出模式,对应位如下:
  
GPE4 GPE3 GPE2 GPE1 GPE0
参考S3C2410 芯片datasheet 的I/O口章节,都要设为10(二进制)。
  local_irq_restore(flags);
  设置完GPIO 口的工作模式,就可以前面已经分析过的local_irq_restore 宏函数来恢复IRQ 和FIQ 的中断使能状态。
  init_uda1341();
  这里调用了init_uda1341 函数来初始化UDA1341 芯片,该函数会在后面说明。
  output_stream.dma_ch = DMA_CH2;
  if (audio_init_dma(&output_stream, "UDA1341 out")) {
audio_clear_dma(&output_stream);
printk( KERN_WARNING AUDIO_NAME_VERBOSE
": unable to get DMA channels/n" );
return -EBUSY;
}
  input_stream.dma_ch = DMA_CH1;
  if (audio_init_dma(&input_stream, "UDA1341 in")) {
audio_clear_dma(&input_stream);
printk( KERN_WARNING AUDIO_NAME_VERBOSE
": unable to get DMA channels/n" );
return -EBUSY;
}

在全局变量中定义了,两个audio_stream_t 结构的变量,分别是output_stream 和input_stream,一个作为输出音频缓冲区,一个作为输入音频缓冲区。
将输出音频缓冲区的DMA 通道设为通道2,输入音频缓冲区的DMA 通道设为通道1。
  在/kernel/include/asm-arm/arch-s3c2410/dma.h 文件中:
#define DMA_CH0 0
#define DMA_CH1 1
#define DMA_CH2 2
#define DMA_CH3 3
  通过查阅S3C2410 芯片datasheet 中的DMA 章节,知道该芯片共有4个DMA 通道,DMA 控制器的每个通道可以从4个DMA 源中选择一个DMA 请求源。其中,通道1具有IIS 输入源,而通道2具有IIS 输出和输入源。所以要以全双工模式进行音频数据传输的话,只有将输出音频缓冲区的设为DMA 通道2,输入音频缓冲区设为DMA 通道1。
  
接着调用2次audio_init_dma 函数来分别对输出和输入音频缓冲区的DMA 通道进行初始化设置。该函数比较简单,定义如下:
static int __init audio_init_dma(audio_stream_t * s, char *desc)
{
if(s->dma_ch == DMA_CH2)
return s3c2410_request_dma("I2SSDO", s->dma_ch, audio_dmaout_done_callback, NULL);
else if(s->dma_ch == DMA_CH1)
return s3c2410_request_dma("I2SSDI", s->dma_ch, NULL ,audio_dmain_done_callback);
else
return 1;
}
  这个函数其实就是对DMA 的通道号进行判断,然后调用了s3c2410_request_dma 函数来向内核申请一个DMA 通道。
  在/kernel/arch/arm/mach-s3c2410/dma.c 文件中:
int s3c2410_request_dma(const char *device_id, dmach_t channel,
dma_callback_t write_cb, dma_callback_t read_cb)
  在该函数中会分配DMA 通道,并申请DMA 中断,即当DMA 传输结束时,会响应中断请求,调用回调函数。这里的参数中,device_id 为设备id 号,用字符串来表示;channel 为DMA 通道号,将前面定义的通道号1,2传入;write_cb 和read_cb 分别指向DMA 发送和读取结束时调用的函数,即DMA 传输结束时调用的回调函数。
在该函数中有:
err = request_irq(dma->irq, dma_irq_handler, 0 * SA_INTERRUPT,
device_id, (void *)dma);
  即申请了一个DMA 的中断号,中断处理子程序为dma_irq_handler 函数,然后:
dma->write.callback = write_cb;
dma->read.callback = read_cb;
  将读写DMA 中断的两个回调函数指针传入。
  在/kernel/arch/arm/mach-s3c2410/dma.c 文件中:
static void dma_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
{
s3c2410_dma_t *dma = (s3c2410_dma_t *)dev_id;
  DPRINTK(__FUNCTION__"/n");
  s3c2410_dma_done(dma);
}
  在中断处理子程序中,调用了s3c2410_dma_done 函数,该函数定义如下:
static inline void s3c2410_dma_done(s3c2410_dma_t *dma)
{
dma_buf_t *buf = dma->curr;
dma_callback_t callback;
  if (buf->write) callback = dma->write.callback;
else callback = dma->read.callback;
  #ifdef HOOK_LOST_INT
stop_dma_timer();
#endif
DPRINTK("IRQ: b=%#x st=%ld/n", (int)buf->id, (long)dma->regs->DSTAT);
if (callback)
callback(buf->id, buf->size);
kfree(buf);
dma->active = 0;
process_dma(dma);
}
  最后在s3c2410_dma_done 函数中,通过callback 函数指针调用了DMA 发送和读取的回调函数。
  DMA 写入和读取的两个回调函数audio_dmaout_done_callback,audio_dmain_done_callback 会在后面说明。其中DMA 写入为音频输出,DMA 读取为音频输入。
在调用audio_init_dma 函数来对输出和输入音频缓冲区的DMA 通道进行初始化设置时,如果返回失败,则会调用audio_clear_dma 函数来释放已申请的DMA 通道。在audio_clear_dma 函数中直接调用了s3c2410_free_dma 函数来进行动作。
  在/kernel/arch/arm/mach-s3c2410/dma.c 文件中:
void s3c2410_free_dma(dmach_t channel)
  该函数中释放了已申请的DMA 通道,并调用了free_irq 函数来释放已分配的DMA 发送和读取结束的中断号。
  audio_dev_dsp = register_sound_dsp(&smdk2410_audio_fops, -1);
audio_dev_mixer = register_sound_mixer(&smdk2410_mixer_fops, -1);
  在驱动模块的初始化函数最后调用了register_sound_dsp,和register_sound_mixer 两个函数来分别注册驱动设备,前者注册为DSP 设备,后者注册为混频器设备。
  在/kernel/drivers/sound/sound_core.c 文件中:
/**
* register_sound_dsp - register a DSP device
* @fops: File operations for the driver
* @dev: Unit number to allocate
*
* Allocate a DSP device. Unit is the number of the DSP requested.
* Pass -1 to request the next free DSP unit. On success the allocated
* number is returned, on failure a negative error code is returned.
*
* This function allocates both the audio and dsp device entries together
* and will always allocate them as a matching pair - eg dsp3/audio3
*/
  int register_sound_dsp(struct file_operations *fops, int dev)
  /**
* register_sound_mixer - register a mixer device
* @fops: File operations for the driver
* @dev: Unit number to allocate
*
* Allocate a mixer device. Unit is the number of the mixer requested.
* Pass -1 to request the next free mixer unit. On success the allocated
* number is returned, on failure a negative error code is returned.
*/
  int register_sound_mixer(struct file_operations *fops, int dev)
  这两个函数的参数一样,fops 为传给内核的file_operations 结构中的接口函数,dev 为分配的设备序号,设为-1 表示由内核自动分配一个空闲的序号。
  
------------------------------------------------------------------------
紧接着就来看一下init_uda1341 这个初始化UDA1341 芯片的函数:
static void init_uda1341(void)
  uda1341_volume = 62 - ((DEF_VOLUME * 61) / 100);
uda1341_boost = 0;
uda_sampling = DATA2_DEEMP_NONE;
uda_sampling &= ~(DATA2_MUTE);
  首先上来就是设定几个待会儿配置要用的参数。参考UDA1341 芯片datasheet 后,可以知道uda1341_volume 参数的含义,62 表示音量设置表中有效音量的总档数,61 表示音量总共有61 档,DEF_VOLUME%表示所要调的音量的百分比大小,这样61*DEF_VOLUME%所得出的就是所要调的音量是音量总档数的第几档,由于音量设置表中列出值的是按衰减量递增的,所以刚才得到的音量档数需要在总档数下衰减多少才能得到呢?显然只要将音量总档数减去所要调到的音量档数即可,即 62-61*DEF_VOLUME%。
  local_irq_save(flags);
  同先前一样,调用该宏函数来保存IRQ 中断使能状态,并禁止IRQ 中断。
  write_gpio_bit(GPIO_L3MODE, 1);
write_gpio_bit(GPIO_L3CLOCK, 1);
  调用write_gpio_bit 宏函数,将GPIO 相应的引脚设为高电平或低电平。这里是把GPIO_L3MODE 和GPIO_L3CLOCK 这两个引脚设为高电平。
  local_irq_restore(flags);
  同先前一样,调用该宏函数来恢复IRQ 和FIQ 的中断使能状态。
  
//*******************************************************
//* 2007.7.6
//*******************************************************
  uda1341_l3_address(UDA1341_REG_STATUS);
uda1341_l3_data(STAT0_SC_384FS | STAT0_IF_MSB); // set 384 system clock, MSB
uda1341_l3_data(STAT1 | STAT1_DAC_GAIN | STAT1_ADC_GAIN | STAT1_ADC_ON | STAT1_DAC_ON);
  下面就调用了uda1341_l3_address 函数和uda1341_l3_data 函数来对UDA1341 芯片进行配置。在看了UDA1341 芯片的datasheet 后知道了,原来S3C2410 与UDA1341 的通信就是通过L3CLOCK,L3DATA,L3MODE 这3个引脚,通信时序由GPIO 口编程控制,有点类似于SPI 接口时序。这两个函数会在后面进行说明。
其中uda1341_l3_address 函数是L3 接口操作模式的地址模式,这里用00010110(二进制)(参考了UDA1341 芯片的datasheet 得知D7~D2 为设备地址,默认UDA1341TS 的设备地址为000101,而D1~D0 为数据传输的类型)参数设置为寄存器状态地址。uda1341_l3_data 函数是L3 接口操作模式的数据传输模式,这里先用00011000(二进制)参数将系统时钟设置为384fs,数据输入格式设置为MSB 模式,然后用11100011(二进制)参数将DAC 和ADC 的获取开关都设为6dB,将DAC 和ADC 电源控制都设为打开。
  uda1341_l3_address(UDA1341_REG_DATA0);
uda1341_l3_data(DATA0 |DATA0_VOLUME(uda1341_volume)); // maximum volume
uda1341_l3_data(DATA1 |DATA1_BASS(uda1341_boost)| DATA1_TREBLE(0));
uda1341_l3_data(uda_sampling); /* --;;*/
uda1341_l3_data(EXTADDR(EXT2));
uda1341_l3_data(EXTDATA(EXT2_MIC_GAIN(0x6)) | EXT2_MIXMODE_CH1);
  再次调用uda1341_l3_address 函数,用00010100(二进制)参数设置为直接地址寄存器模式。接着分5次调用uda1341_l3_data 函数来进行配置,第一次用uda1341_volume 参数的值23(十进制)将音量大小设置为总音量的65%;第二次用01000000(二进制)参数将低音推进设置为0,高音设置为0;第三次用 00000000(二进制)参数又将音量调到衰减0dB,即调到最大(不理解为什么);最后两次要一起看,先用11000010(二进制)参数将 EA2~EA0 设为010(二进制)进入设置特定功能的外部地址,然后用11111001(二进制)参数将ED4~ED0 设为11001(二进制)将MIC 的灵敏度设为+27dB,将混频器模式设为选择通道1输入(这时通道2输入关闭)。
【其实这里的“uda1341_l3_data(uda_sampling); /* --;;*/”,这句话应该是不正确的,不是准备再将音量调到最大。应该改为:
uda_l3_data(DATA2 | uda_sampling);
即用10000000(二进制)参数设置静音关闭和高低音模式为flat 模式(高低音增益都为0dB)等。】
  
------------------------------------------------------------------------
马上来看一下uda1341_l3_address 和uda1341_l3_data 这两个具体控制GPIO 口时序来传输数据的函数。首先看uda1341_l3_address 函数:
static void uda1341_l3_address(u8 data)
  local_irq_save(flags);
  在对GPIO 口设置或操作前总要先调用该宏函数来保存IRQ 中断使能状态,并禁止IRQ 中断。
  write_gpio_bit(GPIO_L3MODE, 0);
write_gpio_bit(GPIO_L3DATA, 0);
write_gpio_bit(GPIO_L3CLOCK, 1);
  分别将GPIO_L3MODE 引脚设为低电平,将GPIO_L3DATA 引脚设为低电平,将GPIO_L3CLOCK 引脚设为高电平。根据UDA1341 芯片datasheet 里的时序图,把GPIO_L3MODE 引脚设为低电平,就是地址模式。
  udelay(1);
  调用udelay 函数来短暂延时1us。在驱动程序中用udelay 函数来延时微秒级时间,mdelay 函数来延时毫秒级时间,而在应用程序中用usleep 函数来延时微秒级时间,sleep 函数来延时毫秒级时间。
  在/kernel/include/asm-arm/delay.h 文件中:
/*
* division by multiplication: you don't have to worry about
* loss of precision.
*
* Use only for very small delays ( < 1 msec). Should probably use a
* lookup table, really, as the multiplications take much too long with
* short delays. This is a "reasonable" implementation, though (and the
* first constant multiplications gets optimized away if the delay is
* a constant)
*/
extern void udelay(unsigned long usecs);
  在/kernel/include/linux/delay.h 文件中:
#ifdef notdef
#define mdelay(n) (/
{unsigned long msec=(n); while (msec--) udelay(1000);})
#else
#define mdelay(n) (/
(__builtin_constant_p(n) && (n)>= 1;
}
  接下来的这个步骤和uda1341_l3_address 函数一样,一位一位将数据发送出去。
  write_gpio_bit(GPIO_L3MODE, 1);
write_gpio_bit(GPIO_L3MODE, 0);
udelay(1);
write_gpio_bit(GPIO_L3MODE, 1);
  最后,GPIO_L3MODE 信号同样需要有一个低电平的脉冲才表示数据传输模式结束,所以再次设置该引脚为高电平,低电平,高电平。
  local_irq_restore(flags);
  完成后,调用该宏函数来恢复IRQ 和FIQ 的中断使能状态。
  
------------------------------------------------------------------------
看一下卸载驱动模块时调用的函数:
void __exit s3c2410_uda1341_exit(void)
  这个函数就比较简单了。
  unregister_sound_dsp(audio_dev_dsp);
unregister_sound_mixer(audio_dev_mixer);
  首先调用unregister_sound_dsp 和unregister_sound_mixer 这两个函数来分别注销原先注册的DSP 设备和混频器设备。
  在/kernel/drivers/sound/sound_core.c 文件中:
/**
* unregister_sound_dsp - unregister a DSP device
* @unit: unit number to allocate
*
* Release a sound device that was allocated with register_sound_dsp().
* The unit passed is the return value from the register function.
*
* Both of the allocated units are released together automatically.
*/
  void unregister_sound_dsp(int unit)
  /**
* unregister_sound_mixer - unregister a mixer
* @unit: unit number to allocate
*
* Release a sound device that was allocated with register_sound_mixer().
* The unit passed is the return value from the register function.
*/
  void unregister_sound_mixer(int unit)
  这两个函数的参数一样,为刚才调用注册函数时返回的内核所分配的设备序号。
  audio_clear_dma(&output_stream);
audio_clear_dma(&input_stream); /* input */
  分两次调用audio_clear_dma 函数来分别释放已申请的音频输入和音频输出的DMA 通道。
  
------------------------------------------------------------------------
继续来看一下打开设备文件的接口函数,这里先看针对DSP 设备文件的函数:
static int smdk2410_audio_open(struct inode *inode, struct file *file)
  if ((file->f_flags & O_ACCMODE) == O_RDONLY) {
if (audio_rd_refcount || audio_wr_refcount)
return -EBUSY;
audio_rd_refcount++;
} else if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
if (audio_wr_refcount)
return -EBUSY;
audio_wr_refcount++;
} else if ((file->f_flags & O_ACCMODE) == O_RDWR) {
if (audio_rd_refcount || audio_wr_refcount)
return -EBUSY;
audio_rd_refcount++;
audio_wr_refcount++;
} else
return -EINVAL;
  首先上来就是一大段条件判断,主要就是判断file->f_flags 这个表示设备文件的打开方式是读取,写入,还是可读写。用audio_rd_refcount 和audio_wr_refcount 这两个变量来设置类似于信号量一样的读写占位标志(要写设备的话,只要没有用写方式打开过设备即可;要读的话,则需要该设备同时没有用读或写方式打开过),只要打开过设备文件,相应的方式标志就会加一。
  if (cold) {
audio_rate = AUDIO_RATE_DEFAULT;
audio_channels = AUDIO_CHANNELS_DEFAULT;
audio_fragsize = AUDIO_FRAGSIZE_DEFAULT;
audio_nbfrags = AUDIO_NBFRAGS_DEFAULT;
  在audio_rd_refcount 和audio_wr_refcount 这两个变量都为0 的时候才进入这一步,即对已经打开过的设备文件不进行下面的操作。
这里先设置一下待会儿要配置到IIS 相关寄存器中的变量。
  if ((file->f_mode & FMODE_WRITE)){
init_s3c2410_iis_bus_tx();
audio_clear_buf(&output_stream);
}
if ((file->f_mode & FMODE_READ)){
init_s3c2410_iis_bus_rx();
audio_clear_buf(&input_stream);
}
}
  从file->f_mode 中判断文件是否可读可写,根据设备文件的打开模式,分别调用了init_s3c2410_iis_bus_tx 和init_s3c2410_iis_bus_rx 函数来进行对IIS 总线读写的初始化配置,在这两个函数中对S3C2410 芯片的IIS 相关寄存器进行了相应的配置,会在后面说明。然后又调用了audio_clear_buf 函数来分别对音频输入和输出两个DMA 缓冲区进行了清空,该函数也会在后面说明。
因为读写操作控制必须用f_mode 来进行判断,所以这里要根据f_mode 为可读或可写的标识来进行读写模式的硬件设置。而read,write 函数不需要检查f_mode 因为读写权限的检查是由内核在调用他们之前进行的。
  MOD_INC_USE_COUNT;
  最后调用MOD_INC_USE_COUNT; 来对设备文件计数器加一计数,并返回。
  
------------------------------------------------------------------------
下面马上来看一下init_s3c2410_iis_bus_tx 和init_s3c2410_iis_bus_rx 这两个函数,首先是init_s3c2410_iis_bus_tx 函数:
static void init_s3c2410_iis_bus_tx(void)
  IISCON = 0;
IISMOD = 0;
IISFIFOC = 0;
  首先初始化IIS 控制寄存器,IIS 模式寄存器和IIS FIFO 控制寄存器都为0。
  /* 44 KHz , 384fs */
IISPSR = (IISPSR_A(iispsr_value(S_CLOCK_FREQ, 44100))
| IISPSR_B(iispsr_value(S_CLOCK_FREQ, 44100)));
  设置IIS 预分频寄存器,其中调用了iispsr_value 函数来计算预分频值,该函数会在后面说明。
参考S3C2410 芯片datasheet 中关于IIS 总线接口的章节,具体设置参数如下:
IISPSR_A(iispsr_value(S_CLOCK_FREQ, 44100)) = IISPSR_A(iispsr_value(384, 44100)) = (一个0~31 之间的值) 16)
例:FSize(0x20005); = 2
#define FShft(Field) ((Field) & 0x0000FFFF)
例:FShft(0x20005); = 5
/*
* MACRO: FInsrt
*
* Purpose
* The macro "FInsrt" inserts a value into a bit field by shifting the
* former appropriately.
*
* Input
* Value Bit-field value.
* Field Encoded bit field (using the macro "Fld").
*
* Output
* FInsrt Bit-field value positioned appropriately.
*/
#define FInsrt(Value, Field) /
(UData (Value) max_xres * fbi->max_yres *
fbi->max_bpp / 8;
fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
fbi->map_cpu = consistent_alloc(GFP_KERNEL, fbi->map_size,
&fbi->map_dma);
if (fbi->map_cpu)
{
fbi->screen_cpu = fbi->map_cpu + PAGE_SIZE;
fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
fbi->fb.fix.smem_start = fbi->screen_dma;
}
  在/kernel/include/asm-arm/proc-armo/page.h 文件中:
/* PAGE_SHIFT determines the page size. This is configurable. */
#if defined(CONFIG_PAGESIZE_16)
#define PAGE_SHIFT 14 /* 16K */
#else /* default */
#define PAGE_SHIFT 15 /* 32K */
#endif
在/kernel/include/asm-arm/page.h 文件中:
#define PAGE_SIZE (1UL fb.fix.smem_len = 240*320*16/8 = 0x25800 =150K(9.375个PAGE)
PAGE_SHIFT = 14
PAGE_SIZE = 1fb.fix.smem_len + PAGE_SIZE) = PAGE_ALIGN(150K + 16K) = PAGE_ALIGN(166K)
= (166K + 16K - 1) & 0xFFFFC000 = 0x2D7FF & 0xFFFFC000 = 0x2C000 =176K
consistent_alloc(GFP_KERNEL, 176K, &fbi->map_dma);
最后得到:
framebuffer(物理地址)
|---------------|
| ... |
-------|---------------| map_dma
| 16K |
分配了 |---------------| screen_dma = fbi->fb.fix.smem_start
176K | |
共11个 | | 160K = 10个PAGE
PAGE | 160K | 可以容下所需的150K 视频缓冲区大小
(16K) | |
| |
-------|---------------|-------
| ... |
|---------------|
  //*******************************************************
//* 2007.6.19
//*******************************************************
在/kernel/drivers/video/s3c2410fb.c 文件中的s3c2410fb_activate_var 函数中:
unsigned long VideoPhysicalTemp = fbi->screen_dma;
这里已经得到了framebuffer 在内存中的起始地址为VideoPhysicalTemp,地址数据位为A。
new_regs.lcdcon1 = fbi->reg.lcdcon1 & ~LCD1_ENVID;
new_regs.lcdcon2 = (fbi->reg.lcdcon2 & ~LCD2_LINEVAL_MSK)
| LCD2_LINEVAL(var->yres - 1);
/* TFT LCD only ! */
new_regs.lcdcon3 = (fbi->reg.lcdcon3 & ~LCD3_HOZVAL_MSK)
| LCD3_HOZVAL(var->xres - 1);
new_regs.lcdcon4 = fbi->reg.lcdcon4;
new_regs.lcdcon5 = fbi->reg.lcdcon5;
LCDCON1 首先需要禁止视频输出才能进行寄存器的设置,然后对LCDCON2,LCDCON3 进行设置,主要是增加LINEVAL 和HOZVAL 这两个显示尺寸的参数。LCDCON4,LCDCON5 按原来配置设置。
  LCDBANK 为系统内存中视频缓冲区在系统存储器内的段地址的A
LCDBASEU 为LCD framebuffer 的起始地址的A
LCDBASEL 为LCD framebuffer 的结束地址的A
OFFSIZE 为某一行的第一个半字与前一行最后一个半字之间的距离(单位:半字数,即2个字节)
PAGEWIDTH 为显示存储区的可见帧宽度(单位:半字数,即2个字节)
  new_regs.lcdsaddr1 =
LCDADDR_BANK(((unsigned long)VideoPhysicalTemp >> 22))
| LCDADDR_BASEU(((unsigned long)VideoPhysicalTemp >> 1));
new_regs.lcdsaddr2 = LCDADDR_BASEL(
((unsigned long)VideoPhysicalTemp + (var->xres * 2 * (var>yres))) >> 1);
这里LCDADDR_BASEL 的计算方法为用framebuffer 在内存中的起始地址VideoPhysicalTemp,加上framebuffer 的大小(LCD屏的宽度 * LCD屏的高度 * 每像素的位数 / 每字节的位数),得到framebuffer 在内存中的结束地址,然后右移1位。
new_regs.lcdsaddr3 = LCDADDR_OFFSET(0) | (LCDADDR_PAGE(var->xres));
这里PAGEWIDTH 的计算方法为:LCD屏的宽度*每像素的位数/16位 (半字)。
  问题:以上这些操作是否已经对DMA 控制器进行了设置?
我认为这里将framebuffer 在内存中的起始地址为VideoPhysicalTemp 变换后载入LCDADDR1,LCDADDR2,LCDADDR3 中就已经完成了对LCDCDMA 控制器的源数据的基地址设置,当打开LCDCON1 |= LCD1_ENVID; 后就可以由LCDCDMA 控制器自动从framebuffer 中传数据到LCD 屏幕了。
  ------------------------------------------------------------------------
在/kernel/drivers/video/s3c2410fb.c 文件中的xxx_stn_info 结构体初始化中:
lcdcon5 : LCD5_FRM565 | LCD5_INVVLINE | LCD5_INVVFRAME | LCD5_HWSWP | LCD5_PWREN,
INVVCLK , INVLINE , INVFRAME , INVVD :通过前面的时序图,我们知道,CPU的LCD控制器输出的时序默认是正脉冲,而LCD需要VSYNC(VFRAME)、VLINE(HSYNC)均为负脉冲,因此 INVLINE 和 INVFRAME 必须设为“1 ”,即选择反相输出。 INVVDEN , INVPWREN , INVLEND 的功能同前面的类似。
PWREN 为LCD电源使能控制。在CPU LCD控制器的输出信号中,有一个电源使能管脚LCD_PWREN,用来做为LCD屏电源的开关信号。
其中LCD5_HWSWP 一项,设置了LCD从内存中显示数据时,经过了半字交换。
16BPP Display
(BSWP = 0, HWSWP = 0)
D D
000H P1 P2
004H P3 P4
008H P5 P6
...
(BSWP = 0, HWSWP = 1)
D D
000H P2 P1
004H P4 P3
008H P6 P5
...
像素显示顺序如下:
P1 P2 P3 P4 P5 ...
例如:内存地址的数据为:0x11223344 (32位)
系统存储器采用Big-Endian(大端模式)存储格式,地址数据格式如下:
D D
00 01 02 03
00H 0x11 0x22 0x33 0x44
(0x1122) (0x3344)
04H ...
08H ...
则首先显示0x3344 的数据到第一个像素,然后再显示0x1122 到第二个像素。
系统存储器采用Little-Endian(小端模式)存储格式,地址数据格式如下:
D D
03 02 01 00
00H 0x11 0x22 0x33 0x44
(0x1122) (0x3344)
04H ...
08H ...
则首先显示0x3344 的数据到第一个像素,然后再显示0x1122 到第二个像素。

//*******************************************************
//* 2007.6.20
//*******************************************************
在/kernel/arch/arm/mm/consistent.c 文件中的consistent_alloc 函数中:
void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle)
{
...
virt = page_address(page);
*dma_handle = virt_to_bus(virt);
ret = __ioremap(virt_to_phys(virt), size, 0);
...
}
这里调用该函数来分配一段内存空间有两个返回值,一个返回值返回给了ret 指针,另一个返回值返回给了dma_handle 指针。virt_to_bus 和virt_to_phys 函数的调用可以参考下面的分析。经过分析这两个函数作用一样,都是将virt 这个虚拟地址转换为物理地址。所以返回给指针dma_handle 的是所分配内存的起始地址(物理地址)。__ioremap 函数的调用也可以参考下面的说明,该函数也返回所分配内存的起始地址(虚拟地址),不过是经过I/O 内存映射的,把物理地址转换为了虚拟地址。
这样一来就很清楚了,返回的framebuffer 的物理地址给了指针dma_handle,也就是fbi->map_dma,到fbi->screen_dma,再到 fbi->fb.fix.smem_start,最后到了指针VideoPhysicalTemp,这样写入到LCDADDR1,LCDADDR2 寄存器中的framebuffer 的地址其实都是物理地址。
而返回的framebuffer 的虚拟地址给了指针ret,也就是fbi->map_cpu,到fbi->screen_cpu,最后到了 display->screen_base(见/kernel/drivers/video/s3c2410fb.c 文件中的s3c2410fb_set_var 函数)。
  ------------------------------------------------------------------------
在/kernel/drivers/video/fbmem.c 文件中:
/**
* register_framebuffer - registers a frame buffer device
* @fb_info: frame buffer info structure
*
* Registers a frame buffer device @fb_info.
*
* Returns negative errno on error, or zero for success.
*
*/
int
register_framebuffer(struct fb_info *fb_info)
/**
* unregister_framebuffer - releases a frame buffer device
* @fb_info: frame buffer info structure
*
* Unregisters a frame buffer device @fb_info.
*
* Returns negative errno on error, or zero for success.
*
*/
int
unregister_framebuffer(struct fb_info *fb_info)
static int
fb_open(struct inode *inode, struct file *file)
static int
fb_release(struct inode *inode, struct file *file)
static ssize_t
fb_read(struct file *file, char *buf, size_t count, loff_t *ppos)
static ssize_t
fb_write(struct file *file, const char *buf, size_t count, loff_t *ppos)
static int
fb_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
static int
fb_mmap(struct file *file, struct vm_area_struct * vma)
在该文件中包含了所有驱动LCD 的函数。在fb_read 和fb_write 这两个函数中,都对framebuffer 进行了操作。
fb_read 函数中:
char *base_addr;
base_addr = info->disp->screen_base;
count -= copy_to_user(buf, base_addr+p, count);
fb_write 函数中:
char *base_addr;
base_addr = info->disp->screen_base;
count -= copy_from_user(base_addr+p, buf, count);
  所读写的framebuffer 的基地址就是disp->screen_base,也就是fbi->screen_cpu 所指的framebuffer 的虚拟地址。
从而得到:
framebuffer(虚拟地址)
|---------------|
| ... |
-------|---------------| map_cpu
| 16K |
分配了 |---------------| screen_cpu = display->screen_base
176K | |
共11个 | | 160K = 10个PAGE
PAGE | 160K | 可以容下所需的150K 视频缓冲区大小
(16K) | |
| |
-------|---------------|-------
| ... |
|---------------|
其中display->screen_base 结构在/kernel/include/video/fbcon.h 文件中定义。
得出结论,在分配framebuffer 时一共返回两个指针,虽然是同一块内存空间,但一个返回的是实际的物理地址,另一个返回的是经过地址转换的虚拟地址。在设置LCD 控制器中framebuffer 起始地址寄存器时,用的是所分配内存的物理地址;而当要对framebuffer 进行读写操作时,用的是同一块内存的物理地址所转换后的虚拟地址。由此可以知道,内核在对每个I/O 地址进行读写操作时用的都是经过转换的虚拟地址。
  ------------------------------------------------------------------------
------------------------------------------------------------------------
在/kernel/include/asm-arm/arch-s3c2410/memory.h 文件中:
/*
* Page offset: 3GB
*/
#define PAGE_OFFSET (0xc0000000UL)
#define PHYS_OFFSET (0x30000000UL)
/*
* We take advantage of the fact that physical and virtual address can be the
* saem. Thu NUMA code is handling the large holes that might exist between
* all memory banks.
*/
#define __virt_to_phys__is_a_macro
#define __phys_to_virt__is_a_macro
#define __virt_to_phys(x) ((x) - PAGE_OFFSET + PHYS_OFFSET)
#define __phys_to_virt(x) ((x) - PHYS_OFFSET + PAGE_OFFSET)
  由此可见: 起始点地址 PHYS_OFFSET PAGE_OFFSET
| |
|--0x30000000--|------间隔------|
PHYS_OFFSET(物理地址起始点): |--------------|...........................
|
|-----------0xc0000000----------|
PAGE_OFFSET(虚拟地址起始点): |-------------------------------|..........
  物理地址与虚拟地址的间隔为:PAGE_OFFSET - PHYS_OFFSET。这样一来,以上对物理地址和虚拟地址之间转换的宏定义就很好理解了。
虚拟地址转为物理地址宏:__virt_to_phys(x)
= (x) - (PAGE_OFFSET - PHYS_OFFSET) = (x) - PAGE_OFFSET + PHYS_OFFSET
物理地址转为虚拟地址宏:__phys_to_virt(x)
= (x) + (PAGE_OFFSET - PHYS_OFFSET) = (x) + PAGE_OFFSET - PHYS_OFFSET
内核虚拟地址和实际物理地址仅仅是相差一个偏移量(PAGE_OFFSET),可以很方便的将其转化为物理内存地址,同时内核也提供了virt_to_phys() 函数将内核虚拟空间中的物理影射区地址转化为物理地址。
  /*
* Virtual viewDMA view memory address translations
* virt_to_bus: Used to translate the virtual address to an
* address suitable to be passed to set_dma_addr
* bus_to_virt: Used to convert an address for DMA operations
* to an address that the kernel can use.
*/
#define __virt_to_bus__is_a_macro
#define __bus_to_virt__is_a_macro
#define __virt_to_bus(x) __virt_to_phys(x)
#define __bus_to_virt(x) __phys_to_virt(x)
  这里注意:__virt_to_bus(x) 就等于__virt_to_phys(x)
------------------------------------------------------------------------
在/kernel/include/asm-arm/memory.h 文件中:
/*
* These are *only* valid on the kernel direct mapped RAM memory.
*/
static inline unsigned long virt_to_phys(volatile void *x)
{
return __virt_to_phys((unsigned long)(x));
}
/*
* VirtualDMA view memory address translations
* Again, these are *only* valid on the kernel direct mapped RAM
* memory.
*/
#define virt_to_bus(x) (__virt_to_bus((unsigned long)(x)))
  由上面的分析可知:virt_to_bus(x) 和virt_to_phys(volatile void *x) 这两个函数调用的都是__virt_to_phys(x) 即((x) - PAGE_OFFSET + PHYS_OFFSET)。所以这两个调用都是将虚拟地址转换为了物理地址。
  ------------------------------------------------------------------------
在/kernel/arch/arm/mm/ioremap.c 文件中:
/*
* Remap an arbitrary physical address space into the kernel virtual
* address space. Needed when the kernel wants to access high addresses
* directly.
*
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
* have to convert them into an offset in a page-aligned mapping, but the
* caller shouldn't need to know that small detail.
*
* 'flags' are the extra L_PTE_ flags that you want to specify for this
* mapping. See include/asm-arm/proc-armv/pgtable.h for more information.
*/
void * __ioremap(unsigned long phys_addr, size_t size, unsigned long flags)
ioremap 函数的作用是将physical address以及bus address映射为kernel的
virtual adrress。
ioremap 的作用是把I/O 内存地址(物理地址)映射到虚拟地址空间,使用之前需要分配I/O 内存区域。但是,ioremap 函数的内部实现并不是简单的((IO的物理地址)-0x10000000 +0xE4000000)。所以,得到的虚拟地址可能是不同的。
因为linux 用的是页面映射机制,CPU 不能按物理地址来访问存储空间,而必须使用虚拟地址,所以必须反向的从物理地址出发找到一片虚存空间并建立起映射。
  //*******************************************************
//* 2007.6.22
//*******************************************************
在/kernel/drivers/video/fbmem.c 文件中:
static struct file_operations fb_fops = {
owner: THIS_MODULE,
read: fb_read,
write: fb_write,
ioctl: fb_ioctl,
mmap: fb_mmap,
open: fb_open,
release: fb_release,
#ifdef HAVE_ARCH_FB_UNMAPPED_AREA
get_unmapped_area: get_fb_unmapped_area,
#endif
};
这个结构中定义了对LCD 所分配的framebuffer 进行读写操作,以及一些内存映射之类的函数,这些源函数都在该文件中。
  /**
* register_framebuffer - registers a frame buffer device
* @fb_info: frame buffer info structure
*
* Registers a frame buffer device @fb_info.
*
* Returns negative errno on error, or zero for success.
*
*/
int
register_framebuffer(struct fb_info *fb_info)
这个是对LCD 的framebuffer 设备进行注册时调用到的注册函数,该函数在/kernel/drivers/video/s3c2410fb.c 文件的s3c2410fb_init 函数里的最后部分被调用。
fb_info->devfs_handle =
devfs_register (devfs_handle, name_buf, DEVFS_FL_DEFAULT,
FB_MAJOR, i, S_IFCHR | S_IRUGO | S_IWUGO,
&fb_fops, NULL);
在注册函数的最后部分,将前面的fb_fops 结构里的各个驱动函数的入口点传入到devfs_register()设备注册函数中。
  //*******************************************************
//* 2007.6.26
//*******************************************************
上面这个devfs_register 函数(原型在/kernel/fs/devfs/base.c 文件中)执行前,在fbmem_init 函数中调用了函数:
devfs_handle = devfs_mk_dir (NULL, "fb", NULL);
  在/kernel/fs/devfs/base.c 文件中:
/**
* devfs_mk_dir - Create a directory in the devfs namespace.
* @dir: The handle to the parent devfs directory entry. If this is %NULL the
* new name is relative to the root of the devfs.
* @name: The name of the entry.
* @info: An arbitrary pointer which will be associated with the entry.
*
* Use of this function is optional. The devfs_register() function
* will automatically create intermediate directories as needed. This function
* is provided for efficiency reasons, as it provides a handle to a directory.
* Returns a handle which may later be used in a call to devfs_unregister().
* On failure %NULL is returned.
*/
devfs_handle_t devfs_mk_dir (devfs_handle_t dir, const char *name, void *info)
  这个devfs_mk_dir 函数会在设备文件系统中创建一个名为fb 的目录,并返回一个带有devfs 设备文件系统目录结构的数据结构变量devfs_handle。然后把这个数据结构作为下一步调用devfs_register 函数时的参数,该参数在调用设备文件系统注册清除函数devfs_unregister 时也要作为参数传入。
  /**
* devfs_register - Register a device entry.
* @dir: The handle to the parent devfs directory entry. If this is %NULL the
* new name is relative to the root of the devfs.
* @name: The name of the entry.
* @flags: A set of bitwise-ORed flags (DEVFS_FL_*).
* @major: The major number. Not needed for regular files.
* @minor: The minor number. Not needed for regular files.
* @mode: The default file mode.
* @ops: The &file_operations or &block_device_operations structure.
* This must not be externally deallocated.
* @info: An arbitrary pointer which will be written to the @private_data
* field of the &file structure passed to the device driver. You can set
* this to whatever you like, and change it once the file is opened (the next
* file opened will not see this change).
*
* Returns a handle which may later be used in a call to devfs_unregister().
* On failure %NULL is returned.
*/
devfs_handle_t devfs_register (devfs_handle_t dir, const char *name,
unsigned int flags,
unsigned int major, unsigned int minor,
umode_t mode, void *ops, void *info)
函数devfs_register 是设备文件系统的主册函数,会在刚才创建的目录下再创建一个名为name 的设备文件节点。返回的devfs_handle_t 数据结构变量会在调用设备文件系统注册清除函数devfs_unregister 时作为参数传入。
  fb_info->devfs_handle =
devfs_register (devfs_handle, name_buf, DEVFS_FL_DEFAULT,
FB_MAJOR, i, S_IFCHR | S_IRUGO | S_IWUGO,
&fb_fops, NULL);
  调用该函数后,会在刚才创建的fb 目录下再创建一个名为0 (name_buf)的设备文件节点,并赋予相应的权限,以及主次设备号和file_operations 结构的函数入口。
这样一来,Linux 设备文件的创建,删除和目录层次等都由各设备驱动程序管理,再也不用手工创建设备文件节点了,再也不需要mknod 时查找对应的主设备号了,也不用依靠复杂的脚本来管理设备文件了。

  
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/nick0411/archive/2008/08/19/2796623.aspx
页: [1]
查看完整版本: armlinux学习笔记--IIS音频驱动程序分析