maxc1017 发表于 2016-12-17 11:23:20

Redis学习笔记11--Redis分布式

  Redis-2.4.15目前没有提供集群的功能,Redis作者在博客中说将在3.0中实现集群机制。目前Redis实现集群的方法主要是采用一致性哈稀分片(Shard),将不同的key分配到不同的redis server上,达到横向扩展的目的。下面来介绍一种比较常用的分布式场景:
  在读写操作比较均匀且实时性要求较高,可以用下图的分布式模式:
  在读操作远远多于写操作时,可以用下图的分布式模式:
         对于一致性哈稀分片的算法,Jedis-2.0.0已经提供了,下面是使用示例代码(以ShardedJedisPool为例):
  package com.jd.redis.client;
   
  import java.util.ArrayList;
  import java.util.List;
   
  import redis.clients.jedis.JedisPoolConfig;
  import redis.clients.jedis.JedisShardInfo;
  import redis.clients.jedis.ShardedJedis;
  import redis.clients.jedis.ShardedJedisPool;
  import redis.clients.util.Hashing;
  import redis.clients.util.Sharded;
   
  publicclass RedisShardPoolTest {
      static ShardedJedisPoolpool;
      static{
          JedisPoolConfig config =new JedisPoolConfig();//Jedis池配置
          config.setMaxActive(500);//最大活动的对象个数
            config.setMaxIdle(1000 * 60);//对象最大空闲时间
            config.setMaxWait(1000 * 10);//获取对象时最大等待时间
            config.setTestOnBorrow(true);
          String hostA = "10.10.224.44";
            int portA = 6379;
            String hostB = "10.10.224.48";
            int portB = 6379;
          List<JedisShardInfo> jdsInfoList =new ArrayList<JedisShardInfo>(2);
          JedisShardInfo infoA = new JedisShardInfo(hostA, portA);
          infoA.setPassword("redis.360buy");
          JedisShardInfo infoB = new JedisShardInfo(hostB, portB);
          infoB.setPassword("redis.360buy");
          jdsInfoList.add(infoA);
          jdsInfoList.add(infoB);
         
          pool =new ShardedJedisPool(config, jdsInfoList, Hashing.MURMUR_HASH,
  Sharded.DEFAULT_KEY_TAG_PATTERN);
      }
     
      /**
       * @param args
       */
      publicstaticvoid main(String[] args) {
          for(int i=0; i<100; i++){
              String key = generateKey();
              //key += "{aaa}";
              ShardedJedis jds = null;
              try {
                  jds = pool.getResource();
                  System.out.println(key+":"+jds.getShard(key).getClient().getHost());
                  System.out.println(jds.set(key,"1111111111111111111111111111111"));
              } catch (Exception e) {
                  e.printStackTrace();
              }
              finally{
                  pool.returnResource(jds);
              }
          }
      }
   
      privatestaticintindex = 1;
      publicstatic String generateKey(){
          return String.valueOf(Thread.currentThread().getId())+"_"+(index++);
      }
  }

  从运行结果中可以看到,不同的key被分配到不同的Redis-Server上去了。
   
         实际上,上面的集群模式还存在两个问题:
  1.       扩容问题:
  因为使用了一致性哈稀进行分片,那么不同的key分布到不同的Redis-Server上,当我们需要扩容时,需要增加机器到分片列表中,这时候会使得同样的key算出来落到跟原来不同的机器上,这样如果要取某一个值,会出现取不到的情况,对于这种情况,Redis的作者提出了一种名为Pre-Sharding的方式:
  Pre-Sharding方法是将每一个台物理机上,运行多个不同断口的Redis实例,假如有三个物理机,每个物理机运行三个Redis实际,那么我们的分片列表中实际有9个Redis实例,当我们需要扩容时,增加一台物理机,步骤如下:
  A.     在新的物理机上运行Redis-Server;
  B.      该Redis-Server从属于(slaveof)分片列表中的某一Redis-Server(假设叫RedisA);
  C.      等主从复制(Replication)完成后,将客户端分片列表中RedisA的IP和端口改为新物理机上Redis-Server的IP和端口;
  D.     停止RedisA。
  这样相当于将某一Redis-Server转移到了一台新机器上。Prd-Sharding实际上是一种在线扩容的办法,但还是很依赖Redis本身的复制功能的,如果主库快照数据文件过大,这个复制的过程也会很久,同时会给主库带来压力。所以做这个拆分的过程最好选择为业务访问低峰时段进行。
  http://blog.nosqlfan.com/html/3153.html
   
  2.       单点故障问题:
  还是用到Redis主从复制的功能,两台物理主机上分别都运行有Redis-Server,其中一个Redis-Server是另一个的从库,采用双机热备技术,客户端通过虚拟IP访问主库的物理IP,当主库宕机时,切换到从库的物理IP。只是事后修复主库时,应该将之前的从库改为主库(使用命令slaveof no one),主库变为其从库(使命令slaveof IP PORT),这样才能保证修复期间新增数据的一致性。
页: [1]
查看完整版本: Redis学习笔记11--Redis分布式