vike681 发表于 2017-5-22 06:48:57

Flume之Failover和Load balancing原理及实例

Failover Sink Processor
  Failover Sink Processor维护了一个sink的优先级列表,具有故障转移的功能,具体的配置如下(加粗的必须配置):
  


属性名称默认值描述

sinks





多个sink用空格分开。




processor.type


default


组件的名称,必须是:failover




processor.priority.<sinkName>





优先级值。<sinkName> 必须是sinks中有定义的。优先级值高Sink会更早被激活。值越大,优先级越高。
注:多个sinks的话,优先级的值不要相同,如果优先级相同的话,只会有一个生效。且failover时,同优先级的不会Failover,就算是同优先级的还存在也会报All sinks failed to process。




processor.maxpenalty


30000


失败的Sink最大的退避时间(单位:毫秒)(退避算法(退避算法为我们在解决重试某项任务的时候,提供了一个比较好的等待思想。),参考:http://qiuqiang1985.iteye.com/blog/1513049)


示例:

a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
a1.sinkgroups.g1.processor.maxpenalty = 10000




Load balancing Sink Processor
  Load balancing sink processor 提供了多个sinks负载均衡的能力。它维护了一个active sinks列表,该列表中的负载必须是分布式的。实现了round_robin(轮询调度) 或者 random(随机) 的选择机制,默认是:round_robin(轮询调度)。也可以通过继承AbstractSinkSelector类来实现自定义的选择机制。

当被调用时,选择器根据配置文件的选择机制挑选下一个sink,并且调用该sink。如果所选的Sink传递Event失败,则通过选择机制挑选下一个可用的Sink,以此类推。



属性名称默认描述

processor.sinks





多个sink用空格分开。




processor.type


default


组件的名称,必须是:load_balance




processor.backoff


false


是否以指数的形式退避失败的Sinks。




processor.selector


round_robin


选择机制。必须是round_robin,random或者自定义的类,该类继承了AbstractSinkSelector




processor.selector.maxTimeOut


30000


默认是30000毫秒,屏蔽故障sink的时间


示例:

a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = random






Failover和Load balancing实例
  测试环境:
  10.0.1.76(Client)

  10.0.1.68 (Failover和Load balancing)

  10.0.1.70
  10.0.1.77
  10.0.1.85
  10.0.1.86
  10.0.1.87
  以10.0.1.76作为客户端,通过exec获取nginx的日志信息,然后将数据传到10.0.1.68(配置了Failover和Load balancing)的节点,最后10.0.1.68将数据发送的10.0.1.70,77,85,86,87节点,这些节点最终将数据写到本地硬盘。

  10.0.1.76的配置:

a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sources.r1.type = exec
a1.sources.r1.command = tail -n 0 -F /home/nginx/logs/access.log
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = 10.0.1.68
a1.sinks.k1.port = 41415
a1.channels = c1
a1.sources = r1
a1.sinks = k1获取nginx产生的日志,然后通过avro发送的10.0.1.68  

  10.0.1.68配置(配置A):

a1.channels = c1
a1.sources = r1
a1.sinks = k70 k77 k85 k86 k87
a1.sinkgroups = g1 g2 g3
a1.sinkgroups.g1.sinks = k70 k85
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.selector = round_robin
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g2.sinks = k70 k86
a1.sinkgroups.g2.processor.type = failover
a1.sinkgroups.g2.processor.priority.k70 = 20
a1.sinkgroups.g2.processor.priority.k86 = 10
a1.sinkgroups.g2.processor.maxpenalty = 10000
a1.sinkgroups.g3.sinks = k85 k87 k77
a1.sinkgroups.g3.processor.type = failover
a1.sinkgroups.g3.processor.priority.k85 = 20
a1.sinkgroups.g3.processor.priority.k87 = 10
a1.sinkgroups.g3.processor.priority.k77 = 5
a1.sinkgroups.g3.processor.maxpenalty = 10000
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sources.r1.type = avro
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 41415
a1.sinks.k87.channel = c1
a1.sinks.k87.type = avro
a1.sinks.k87.hostname = 10.0.1.87
a1.sinks.k87.port = 41414
a1.sinks.k86.channel = c1
a1.sinks.k86.type = AVRO
a1.sinks.k86.hostname = 10.0.1.86
a1.sinks.k86.port = 41414
a1.sinks.k85.channel = c1
a1.sinks.k85.type = AVRO
a1.sinks.k85.hostname = 10.0.1.85
a1.sinks.k85.port = 41414
a1.sinks.k77.channel = c1
a1.sinks.k77.type = AVRO
a1.sinks.k77.hostname = 10.0.1.77
a1.sinks.k77.port = 41414
a1.sinks.k70.channel = c1
a1.sinks.k70.type = AVRO
a1.sinks.k70.hostname = 10.0.1.70
a1.sinks.k70.port = 4141410.0.1.70和10.0.1.85Load balancing,均衡的方式为轮询调用。10.0.1.70和10.0.1.86为Failover,10.0.1.70和10.0.1.87为Failover
  
10.0.1.70,77,85,86,87配置:

a1.channels = c1
a1.sources = r1
a1.sinks = k1
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sources.r1.type = AVRO
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 41414
a1.sinks.k1.channel = c1
a1.sinks.k1.type = file_roll
a1.sinks.k1.sink.directory = /data/load/
a1.sinks.k1.sink.rollInterval = 0通过Avro获取到Event,存放到文件中。  

  每次往nginx发2w个请求,然后查看10.0.1.70,77,85,86,87四台服务器接受数据的情况。我们做几组测试:
  注:表格中的 * 表示关闭关闭该服务器Flume进程。

  测试一:
  发送2w个请求到Nginx中,查看各个节点接受数据的行数:




服务器



10.0.1.70





10.0.1.77





10.0.1.85





10.0.1.86





10.0.1.87





总计







数据行数



3400





0





3459





6778





6363





20000



  其实无论测试2w次请求,还是测试100w次请求,10.0.1.77都无法接受到数据。
  测试二:





服务器



10.0.1.70





10.0.1.77





10.0.1.85





10.0.1.86





10.0.1.87(*)





总计







数据行数



6619





6300





6840





13878





6363





40000





  问题1: 作为Failover的节点86,87为何可以接受数据,而77没有将接收数据呢?
  作为failover,我们会认为只有一个节点生效,其他节点只有在优先级节点down掉才能替补上去,在Flume中关于failover的实现,首先我们要了解Flume加载配置文件是有顺序的。如果配置文件的顺序不同,会导致failover出乎我们的意料,现在我们把上面的(配置A)关于failover和load_balance修改成如下(部分代码):

......
a1.sinkgroups = g2 g1 g3
a1.sinkgroups.g3.sinks = k70 k85
a1.sinkgroups.g3.processor.type = load_balance
a1.sinkgroups.g3.processor.selector = round_robin
a1.sinkgroups.g3.processor.backoff = true
a1.sinkgroups.g2.sinks = k70 k86
a1.sinkgroups.g2.processor.type = failover
a1.sinkgroups.g2.processor.priority.k70 = 20
a1.sinkgroups.g2.processor.priority.k86 = 10
a1.sinkgroups.g2.processor.maxpenalty = 10000
a1.sinkgroups.g1.sinks = k85 k87 k77
a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k85 = 20
a1.sinkgroups.g1.processor.priority.k87 = 10
a1.sinkgroups.g1.processor.priority.k77 = 5
a1.sinkgroups.g1.processor.maxpenalty = 10000
......
如果修改成如下的配置,启动时报如下错误:
WARN 2015-10-22 14:22:01 - Could not configure sink group g3 due to: No available sinks for sinkgroup: g3. Sinkgroup will be removed
org.apache.flume.conf.ConfigurationException: No available sinks for sinkgroup: g3. Sinkgroup will be removed
at org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.validateGroups(FlumeConfiguration.java:754)
at org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.isValid(FlumeConfiguration.java:348)
at org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.access$0(FlumeConfiguration.java:313)
at org.apache.flume.conf.FlumeConfiguration.validateConfiguration(FlumeConfiguration.java:127)
at org.apache.flume.conf.FlumeConfiguration.<init>(FlumeConfiguration.java:109)
。。。。。。报异常的原因,我们可以查看源码,找到答案,FlumeConfiguration类的isValid()方法:
      sourceSet = validateSources(channelSet);
sinkSet = validateSinks(channelSet);
sinkgroupSet = validateGroups(sinkSet);上述是主要的源码片段,可以Debug进去看看,大致的流程:以validateGroups为例,Flume根据sinkgroups顺序的解析配置文件,然后把sink放到变量名为usedSinks的Map当中,每个sink只能使用一次,如果sink在前面某个sinkgroups已经使用,那么就会在该sinkgroups中删除这个sink。按上面的配置,Flume开始解析sinkgroups的g1,则g1包含k85,k87和k77三个有效sink;然后解析sinkgroups的g2,则g2包含k70和k86;解析sinkgroups的g3时,因为k70和k85已经在g1和g2存在了,所以g3包含的sink为空,才导致报如上的错误。也就是说Flume是根据usedSinks来实现failover和load_balance的,因为配置的原因,可能会跟你想象的效果相差甚远。  在AbstractConfigurationProvider类的getConfiguration方法,代码片段:

public MaterializedConfiguration getConfiguration() {
MaterializedConfiguration conf = new SimpleMaterializedConfiguration();
FlumeConfiguration fconfig = getFlumeConfiguration();//加载和验证配置文件的入口
AgentConfiguration agentConf = fconfig.getConfigurationFor(getAgentName());
if (agentConf != null) {
Map<String, ChannelComponent> channelComponentMap = Maps.newHashMap();
Map<String, SourceRunner> sourceRunnerMap = Maps.newHashMap();
Map<String, SinkRunner> sinkRunnerMap = Maps.newHashMap();
try {
loadChannels(agentConf, channelComponentMap);//初始化channel
loadSources(agentConf, channelComponentMap, sourceRunnerMap);//初始化source
loadSinks(agentConf, channelComponentMap, sinkRunnerMap);//初始化sink
......

  验证完之后,加载Channels,Sources,Sinks,根据验证的结果g1,g2,g3的usedSinks分配如下(配置A):
  g1 的usedSinks是:k70和k85
  g2 的usedSinks是:k86
  g3 的usedSinks是:k87,k77

  以loadSinks为例,加载Sink,先调用AbstractConfigurationProvider类的loadSinks方法,然后调用loadSinkGroups方法来初始化Sink,g1的usedSinks有k70和k85,所以k70和k85这两个节点通过round_robin方式balance来接收数据;g2的usedSinks只有k86(由于k70已经在g1中被占用了),所以只有k86接收数据,自然也不会有failover的功能;g3的usedSinks有k87和k77,由于Failover会选取优先级最高的接收数据,所以k87接收数据,当k87挂掉的时候,k77替补上去接收数据。这也就是为何其他节点都可以接收数据,唯独只有k77没有数据的原因。
  再者每个sinkgroups都会启动一个SinkRunner线程去调用FailoverSinkProcessor和LoadBalancingSinkProcessor的process()方法去获取数据,这也就是为啥Failover和balance都能接收数据的原因,具体的实现细节,可以自行阅读源码。

  

  2,Failover的情况下,是否优先级越高的就先生效?
  是的,同一个Failover下的sink都存放在TreeMap下,然后取最大优先级的Sink作为activeSink。
  

  3,Failover的情况下,如果优先级相同是怎么做失败转移的?
  优先级相同的sink节点在failover中只会有一个生效,看源码可以很容易的发现,因为Failover中live的Sink存放在TreeMap中,用优先级作为key,同等优先级的Sink只能保存一个。

@Override
public void configure(Context context) {
liveSinks = new TreeMap<Integer, Sink>();//存活的Sink放在TreeMap中,且用priority作为Key
failedSinks = new PriorityQueue<FailedSink>();
Integer nextPrio = 0;
String maxPenaltyStr = context.getString(MAX_PENALTY_PREFIX);
if(maxPenaltyStr == null) {
maxPenalty = DEFAULT_MAX_PENALTY;
} else {
try {
maxPenalty = Integer.parseInt(maxPenaltyStr);
} catch (NumberFormatException e) {
logger.warn("{} is not a valid value for {}",
new Object[] { maxPenaltyStr, MAX_PENALTY_PREFIX });
maxPenalty= DEFAULT_MAX_PENALTY;
}
}
for (Entry<String, Sink> entry : sinks.entrySet()) {
String priStr = PRIORITY_PREFIX + entry.getKey();
Integer priority;
try {
priority =Integer.parseInt(context.getString(priStr));
} catch (Exception e) {
priority = --nextPrio;
}
if(!liveSinks.containsKey(priority)) {
liveSinks.put(priority, sinks.get(entry.getKey()));//priority作为Key
} else {
logger.warn("Sink {} not added to FailverSinkProcessor as priority" +
"duplicates that of sink {}", entry.getKey(),
liveSinks.get(priority));
}
}
activeSink = liveSinks.get(liveSinks.lastKey());//获取优先级最高的节点作为active节点


总结
  1,load_balance配置中的Sink都可以接收数据。
  2,load_balance根据均衡策略接收数据。
  3,没有Sink既能failover又能load_balance。
  4,failover中的Sink优先级不要设置为相同的值。
  5,failover配置中的Sink只有优先级最高及没有被之前加载的sinkgroups占用的Sink接收数据,如果优先级高的Sink挂掉,则转到优先级次之的Sink。
  6,failover可以做失败转移,如果因为加载顺序的问题,导致failover的Sink已经被占用,failover会造成配置在failover中的sink都能接收数据的假象,其实只是在剩余的sink中实施failover策略。
页: [1]
查看完整版本: Flume之Failover和Load balancing原理及实例