python之rabbitMQ篇
一、RabbitMQ安装RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统,它遵循Mozilla Pulic License开源协议。
MQ全称为Message Queue,消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用链接来链接它们。消息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。
1.yum安装rabbitmq
#安装配置epel源
rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
#安装Erlang
yum -y insatll erlang
#安装RabbitMQ
yum -y install rabbitmq-server
#注意:
service rabbitmq-server start/stop2,安装API
#pip安装:
pip install pika
#源码安装:
https://pypi.python.org/pypi/pika#官网地址 之前我们在介绍线程,进程的时候介绍过python中自带的队列用法,下面我们通过一段代码复习一下:
#生产者消费者模型,解耦的意思就是两个程序之间,互相没有关联了,互不影响。
import queue
import threading
import time
q = queue.Queue(20) #队列里最多存放20个元素
def productor(arg): #生成者,创建30个线程来请求吃包子,往队列里添加请求元素
q.put(str(arg) + '- 包子')
for i in range(30):
t = threading.Thread(target=productor,args=(i,))
t.start()
def consumer(arg): #消费者,接收到队列请求以后开始生产包子,来消费队列里的请求
while True:
print(arg,q.get())
time.sleep(2)
for j in range(3):
t = threading.Thread(target=consumer,args=(j,))
t.start()二、通过Python来操作RabbitMQ队列
上面我们已经将环境装备好,下面我们通过Pika模块来对Rabbitmq队列来进行操作,对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。
1,基本用法
####################################生产者#####################################
import pika
connection=pika.BlockingConnection(pika.ConnectionParameters(host='192.168.10.131'))
#创建一个链接对象,对象中绑定rabbitmq的IP地址
channel=connection.channel() #创建一个频道
channel.queue_declare(queue='name1')#通过这个频道来创建队列,如果MQ中队列存在忽略,没有则创建
channel.basic_publish(exchange='',
routing_key='name1', #指定队列名称
body='Hello World!') #往该队列中发送一个消息
print(" Sent 'Hello World!'")
connection.close() #发送完关闭链接
#####################################消费者######################################
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.10.131'))
#创建一个链接对象,对象中绑定rabbitmq的IP地址
channel = connection.channel() #创建一个频道
channel.queue_declare(queue='name1') #通过这个频道来创建队列,如果MQ中队列存在忽略,没有则创建
def callback(ch, method, properties, body): #callback函数负责接收队列里的消息
print(" Received %r" % body)
channel.basic_consume(callback, #从队列里去消息
queue='name1', #指定队列名
no_ack=True)
print('
[*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() acknowledgment 消息不丢失
上面的例子中如果我们将no-ack=False ,那么当消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么RabbitMQ会重新将该任务添加到队列中。
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.10.131'))
channel = connection.channel()
channel.queue_declare(queue='name1')
def callback(ch, method, properties, body):
print(" Received %r" % body)
import time
time.sleep(10)
print('ok')
ch.basic_ack(delivery_tag = method.delivery_tag) #向生成者发送消费完毕的确认信息,然后生产者将此条消息同队列里剔除
channel.basic_consume(callback,
queue='name1',
no_ack=False) #如果no_ack=False,当消费者down掉了,RabbitMQ会重新将该任务添加到队列中
print('
[*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() 上例如果消费者中断后如果不超过10秒,重新链接的时候数据还在。当超过10秒之后,消费者往生产者发送了ack,重新链接的时候数据将消失。
durable消息不丢失
消费者down掉后我们知道怎么处理了,如果我的RabbitMQ服务down掉了该怎么办呢?
消息队列是可以做持久化,如果我们在生产消息的时候就指定某条消息需要做持久化,那么RabbitMQ发现有问题时,就会将消息保存到硬盘,持久化下来。
####################################生产者#####################################
#!/usr/bin/env python
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.10.131'))
channel = connection.channel()
channel.queue_declare(queue='name2', durable=True) #指定队列持久化
channel.basic_publish(exchange='',
routing_key='name2',
body='Hello World!',
properties=pika.BasicProperties(
delivery_mode=2, #指定消息持久化
))
print(" Sent 'Hello World!'")
connection.close()
#####################################消费者######################################
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.10.131'))
channel = connection.channel()
channel.queue_declare(queue='name2', durable=True)
def callback(ch, method, properties, body):
print(" Received %r" % body)
import time
time.sleep(10)
print('ok')
ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_consume(callback,
queue='name2',
no_ack=False)
print('
[*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() 消息获取顺序
默认消息队列里的数据是按照顺序被消费者拿走的,例如:消费者1去队列中获取奇数序列任务,消费者2去队列中获取偶数序列的任务,消费者1处理的比较快而消费者2处理的比较慢,那么消费者1就会一直处于繁忙的状态,为了解决这个问题在需要加入下面代码:
channel.basic_qos(prefetch_count=1):表示谁来获取,不再按照奇偶数 排列
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='name1')
def callback(ch, method, properties, body):
print(" Received %r" % body)
import time
time.sleep(10)
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,
queue='name1',
no_ack=False)
print('
[*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()2,发布订阅
发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,二发布者发布消息时,会将消息放置在所有相关队列中。
在RabbitMQ中,所有生产者提交的消息都有Exchange来接收,然后Exchange按照特定的策略转发到Queue进行存储,RabbitMQ提供了四种Exchange:fanout、direct、topic、header。由于header模式在实际工作中用的比较少,下面主要对前三种进行比较。
exchange type = fanout :任何发送到Fanout Exchange的消息都会被转发到与该Exchange绑定(Binding)的所有Queue上
为了方便理解,应用了上面这张图,可以清晰的看到相互之间的关系,当我们设置成fanout模式时,如何操作请看下面代码:
####################################发布者#####################################
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='test_fanout',
type='fanout')
message = '4456'
channel.basic_publish(exchange='test_fanout',
routing_key='',
body=message)
print(' Sent %r' % message)
connection.close()
####################################订阅者#####################################
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='test_fanout', #创建一个exchange
type='fanout') #任何发送到Fanout Exchange的消息都会被转发到与该Exchange绑定(Binding)的所有Queue上
#随机创建队列
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
#绑定
channel.queue_bind(exchange='test_fanout',
queue=queue_name) #exchange绑定后端队列
print('<------------->')
def callback(ch,method,properties,body):
print(' %r' % body)
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming() exchange type = direct:任何发送到Direct Exchange的消息都会被转发到RouteKey中指定的Queue上(关键字发送)
之前事例,发送消息时明确指定了某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据关键字发送到消息Exchange,Exchange根据关键字判定应该将数据发送至指定队列。
发布者:
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_test',
type='direct')
severity = 'info' #设置一个key,
message = '99999'
channel.basic_publish(exchange='direct_test',
routing_key=severity,
body=message)
print(" Sent %r:%r" % (severity, message))
connection.close() 订阅者1:
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_test',
type='direct')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
severities = ['error','info',] #绑定队列,并发送关键字error,info
for severity in severities:
channel.queue_bind(exchange='direct_test',
queue=queue_name,
routing_key=severity)
print('
[*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming() 订阅者2:
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_test',
type='direct')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
severities = ['error',]
for severity in severities:
channel.queue_bind(exchange='direct_test',
queue=queue_name,
routing_key=severity)
print('
[*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming() 结论:当我们将发布者的key设置成Error的时候两个队列对可以收到Exchange的消息,当我们将key设置成info后,只有订阅者1可以收到Exchange的消息。
exchange type = topic:任何发送到Topic Exchange的消息都会被转发到所有关心RouteKey中指定话题的Queue上(模糊匹配)
在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入"路由值"和"关键字"进行匹配,匹配成功,则将数据发送到指定队列。
[*] # :表示可以匹配0个或多个单词;
[*] * :表示只能匹配一个单词。
#发送路由值 队列中
www.cnblogs.com www.* --->#无法匹配
www.cnblogs.com www.# --->#匹配成功 发布者:
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',
type='topic')
routing_key = sys.argv if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',
routing_key=routing_key,
body=message)
print(" Sent %r:%r" % (routing_key, message))
connection.close()
#执行方式:
python xxx.py name1 #name1为routing_key 订阅者:
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',
type='topic')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
binding_keys = sys.argv
if not binding_keys:
sys.stderr.write("Usage: %s ...\n" % sys.argv)
sys.exit(1)
for binding_key in binding_keys:
channel.queue_bind(exchange='topic_logs',
queue=queue_name,
routing_key=binding_key)
print('
[*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
#执行方式:
python xxx,py name1
页:
[1]