ms133 发表于 2018-8-12 07:51:26

python机器学习中英

  监督学习,supervised learning
  无监督学习,unsupervised learning
  分类,classificat
  回归,regression
  降维,dimensionality reduction
  聚类,clustering
  特征向量,feature vector
  编译语言,complied languages
  解释型语言,interpreted languages
  解释器,interpreter
  布尔值,boolean
  元组,tuple
  算术运算,arithmetic operators
  比较运算,comparison operators
  赋值运算,assignment operators
  逻辑运算,logical operators
  成员运算,menbership operators

  二分类,binary>
  多分类,multiclass>
  多标签分类,multi-lable>
  线性分类器,linear>  系数,coefficient
  截距,intercept
  参数,parameters
  随机梯度上升,stochastic gradient ascend(SGA)
  预测结果,predicted condition
  正确标记,true condition
  混淆矩阵,confusion matrix
  准确性,accuracy
  召回率,recall
  精确率,precision

  随机梯度下降模型,SGD>
  支持向量机分类器,support vector>  朴素贝叶斯,naive bayes
  K近邻分类器,KNeighborsClassifier
  无参数模型,nonparametric model
  信息熵,information gain
  基尼不纯性,gini impurity
  集成,ensemble
  单一决策树,decision tree

  随机森林分类器,random forest>  梯度提升决策树,gradient tree boosting
  平均绝对误差,mean absolute error(MAE)
  均方误差,mean squared error(MSE)
  极端随机森林,extremely randomized trees
  随机回归森林,randomforestregressor
  极端回归森林,extratreesregressor
  核函数,kernal
scikit-learn
  针对房价预测的回归预测能力排名,R-squared(用来衡量模型回归结果的波动可被真实值验证的百分比,也暗示了模型在数值回归方面的能力)
  1,gradient boosting regressor,0.8426
  2,extra trees regressor,0.8195
  3,random forest regressor,0.8024
  4,SVM regressor(RBF kernel),0.7564
  5,KNN regressor(distance-weighted),0.7198
  6,decision tree regressor,0.6941
  7,KNN regressor(uniform-weighted),0.6903
  8,linear regressor,0.6763
  9,SGDregressor,0.6599
  10,SVM regressor(linear kernel),0.6517
  11,SVM regressor(poly kernel),0.4045
  泛化力,generalization
  正则化,regularization
  过拟合,overfitting
  留一验证,leave-one-out cross validation
  交叉验证,K-flod cross-validation
页: [1]
查看完整版本: python机器学习中英