menny 发表于 2018-8-14 09:04:23

Python内存管理机制

  一、变量与对象
  关系图如下:

  1、变量,通过变量指针引用对象
  变量指针指向具体对象的内存空间,取对象的值。
  2、对象,类型已知,每个对象都包含一个头部信息(头部信息:类型标识符和引用计数器)
  注意:
  变量名没有类型,类型属于对象(因为变量引用对象,所以类型随对象),变量引用什么类型的对象,变量就是什么类型的。

In : var1=object  
In : var2=var1
  
In : id(var1)
  
Out: 139697863383968In : id(var2)
  
Out: 139697863383968

  PS:id()是python的内置函数,用于返回对象的身份,即对象的内存地址。


In : a=123In : b=a  

  
In : id(a)
  
Out: 23242832In : id(b)
  
Out: 23242832In : a=456In : id(a)
  
Out: 33166408In : id(b)
  
Out: 23242832

  3、引用所指判断
  通过is进行引用所指判断,is是用来判断两个引用所指的对象是否相同。
  整数
In : a=1In : b=1In : print(a is b)  
True
  短字符串
In : c="good"In : d="good"In : print(c is d)  
True
  长字符串
In : e="very good"In : f="very good"In : print(e is f)  
False
  列表
In : g=[]  
In : h=[]
  
In : print(g is h)
  
False
  由运行结果可知:
  1、Python缓存了整数和短字符串,因此每个对象在内存中只存有一份,引用所指对象就是相同的,即使使用赋值语句,也只是创造新的引用,而不是对象本身;
  2、Python没有缓存长字符串、列表及其他对象,可以由多个相同的对象,可以使用赋值语句创建出新的对象。
  二、引用计数
  在Python中,每个对象都有指向该对象的引用总数---引用计数
  查看对象的引用计数:sys.getrefcount()
  1、普通引用

In : import sys  

  
In : a=
  
In : getrefcount(a)
  
Out: 2In : b=a
  
In : getrefcount(a)
  
Out: 3In : getrefcount(b)
  
Out: 3

  注意:
  当使用某个引用作为参数,传递给getrefcount()时,参数实际上创建了一个临时的引用。因此,getrefcount()所得到的结果,会比期望的多1。
  2、容器对象
  Python的一个容器对象(比如:表、词典等),可以包含多个对象。

In : a=  
In : b=a
  

  
In : a is b
  
Out: True
  

  
In : a=6   In : a
  
Out:
  

  
In : a is b
  
Out: True
  

  
In : b
  
Out:


  由上可见,实际上,容器对象中包含的并不是元素对象本身,是指向各个元素对象的引用。
  3、引用计数增加
  1、对象被创建

In : getrefcount(123)  
Out: 6In : n=123In : getrefcount(123)
  
Out: 7

  2、另外的别人被创建
In : m=n  
In : getrefcount(123)
  
Out: 8
  3、作为容器对象的一个元素
In : a=  
In : getrefcount(123)
  
Out: 9
  4、被作为参数传递给函数:foo(x)
  4、引用计数减少
  1、对象的别名被显式的销毁
In : del m  
In : getrefcount(123)
  
Out: 8
  2、对象的一个别名被赋值给其他对象
In : n=456In : getrefcount(123)  
Out: 7
  3、对象从一个窗口对象中移除,或,窗口对象本身被销毁

In : a.remove(123)  
In : a
  
Out:
  

  
In : getrefcount(123)
  
Out: 6

  4、一个本地引用离开了它的作用域,比如上面的foo(x)函数结束时,x指向的对象引用减1。
  三、垃圾回收
  当Python中的对象越来越多,占据越来越大的内存,启动垃圾回收(garbage collection),将没用的对象清除。
  1、原理
  当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾。比如某个新建对象,被分配给某个引用,对象的引用计数变为1。如果引用被删除,对象的引用计数为0,那么该对象就可以被垃圾回收。
In : a=  

  
In : del a
  2、解析del
  del a后,已经没有任何引用指向之前建立的,该表引用计数变为0,用户不可能通过任何方式接触或者动用这个对象,当垃圾回收启动时,Python扫描到这个引用计数为0的对象,就将它所占据的内存清空。
  3、注意
  1、垃圾回收时,Python不能进行其它的任务,频繁的垃圾回收将大大降低Python的工作效率;
  2、Python只会在特定条件下,自动启动垃圾回收(垃圾对象少就没必要回收)
  3、当Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动。
In : import gc  

  
In : gc.get_threshold()  #gc模块中查看阈值的方法Out: (700, 10, 10)
  阈值分析:
  700即是垃圾回收启动的阈值;
  每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收;
  当然也是可以手动启动垃圾回收: 
In : gc.collect()    #手动启动垃圾回收Out: 2  4、何为分代回收
  Python将所有的对象分为0,1,2三代;
  所有的新建对象都是0代对象;
  当某一代对象经历过垃圾回收,依然存活,就被归入下一代对象。
  四、内存池机制
  Python中有分为大内存和小内存:(256K为界限分大小内存)
  1、大内存使用malloc进行分配
  2、小内存使用内存池进行分配
  3、Python的内存池(金字塔)
  第3层:最上层,用户对Python对象的直接操作
  第1层和第2层:内存池,有Python的接口函数PyMem_Malloc实现-----若请求分配的内存在1~256字节之间就使用内存池管理系统进行分配,调用malloc函数分配内存,但是每次只会分配一块大小为256K的大块内存,不会调用free函数释放内存,将该内存块留在内存池中以便下次使用。
  第0层:大内存-----若请求分配的内存大于256K,malloc函数分配内存,free函数释放内存。
  第-1,-2层:操作系统进行操作
页: [1]
查看完整版本: Python内存管理机制