vlei 发表于 2018-10-30 09:37:22

Eclipse下搭建Hadoop2.7.0开发环境

一、安装Eclipse
二、在eclipse上安装hadoop插件
  1、下载hadoop插件
  http://download.csdn.net/detail/tondayong1981/8680589
  2、把插件放到eclipse/plugins目录下
  3、重启eclipse,配置Hadoop installation directory
  如果插件安装成功,打开Windows—Preferences后,在窗口左侧会有Hadoop Map/Reduce选项,点击此选项,在窗口右侧设置Hadoop安装路径。
http://images.cnitblog.com/blog/12097/201406/221638036142196.png
  4、配置Map/Reduce Locations
  打开Windows—Open Perspective—Other
http://images.cnitblog.com/blog/12097/201406/221638111614501.png
  选择Map/Reduce,点击OK
  在右下方看到如下图所示
http://images.cnitblog.com/blog/12097/201406/221638135821675.png
  点击Map/Reduce Location选项卡,点击右边小象图标,打开Hadoop Location配置窗口:
  输入Location Name,任意名称即可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成与core-site.xml的设置一致即可。(貌似Map/Reduce Master 的端口设置任何数字都可以?)
http://images.cnitblog.com/blog/12097/201406/221638231148553.png
http://images.cnitblog.com/blog/12097/201406/221638251149897.png
  点击"Finish"按钮,关闭窗口。
  点击左侧的DFSLocations—>myhadoop(上一步配置的location name),如能看到user,表示安装成功
http://images.cnitblog.com/blog/12097/201406/221638267542900.png
  如果如下图所示表示安装失败,请检查Hadoop是否启动,以及eclipse配置是否正确。
http://images.cnitblog.com/blog/12097/201406/221638272549986.png

三、新建WordCount项目
  File—>Project,选择Map/Reduce Project,输入项目名称WordCount等。
  在WordCount项目里新建class,名称为WordCount,代码如下:
import java.io.IOException;  
import java.util.StringTokenizer;
  

  
import org.apache.hadoop.conf.Configuration;
  
import org.apache.hadoop.fs.Path;
  
import org.apache.hadoop.io.IntWritable;
  
import org.apache.hadoop.io.Text;
  
import org.apache.hadoop.mapreduce.Job;
  
import org.apache.hadoop.mapreduce.Mapper;
  
import org.apache.hadoop.mapreduce.Reducer;
  
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  
import org.apache.hadoop.util.GenericOptionsParser;
  

  
public class WordCount {
  

  
public static class TokenizerMapper extends Mapper{
  
  private final static IntWritable one = new IntWritable(1);
  
  private Text word = new Text();
  

  
  public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
  
    StringTokenizer itr = new StringTokenizer(value.toString());
  
      while (itr.hasMoreTokens()) {
  
        word.set(itr.nextToken());
  
        context.write(word, one);
  
      }
  
  }
  
}
  

  
public static class IntSumReducer extends Reducer {
  
  private IntWritable result = new IntWritable();
  
  public void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException {
  
    int sum = 0;
  
    for (IntWritable val : values) {
  
      sum += val.get();
  
    }
  
    result.set(sum);
  
    context.write(key, result);
  
  }
  
}
  

  
public static void main(String[] args) throws Exception {
  
  Configuration conf = new Configuration();
  
  String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
  
  if (otherArgs.length != 2) {
  
    System.err.println("Usage: wordcount");
  
    System.exit(2);
  
  }
  
  Job job = new Job(conf, "word count");
  
  job.setJarByClass(WordCount.class);
  
  job.setMapperClass(TokenizerMapper.class);
  
  job.setCombinerClass(IntSumReducer.class);
  
  job.setReducerClass(IntSumReducer.class);
  
  job.setOutputKeyClass(Text.class);
  
  job.setOutputValueClass(IntWritable.class);
  
  FileInputFormat.addInputPath(job, new Path(otherArgs));
  
  FileOutputFormat.setOutputPath(job, new Path(otherArgs));
  
  System.exit(job.waitForCompletion(true) ? 0 : 1);
  
}
  
}
四、运行
  1、在HDFS上创建目录input
  hadoop fs -mkdir /user
  hadoop fs -mkdir /user/inhput
  2、拷贝本地README.txt到HDFS的input里
  hadoop fs -copyFromLocal /opt/hadoop/README.txt /user/input
  3、点击WordCount.java,右键,点击Run As—>Run Configurations,配置运行参数,即输入和输出文件夹
  hdfs://localhost:9000/user/input    hdfs://localhost:9000/user/output
http://images.cnitblog.com/blog/12097/201406/221638389894037.png
  点击Run按钮,运行程序。
  4、运行完成后,查看运行结果
  方法1:
  hadoop fs -ls output
  可以看到有两个输出结果,_SUCCESS和part-r-00000
  执行hadoop fs -cat output/*
  方法2:
  展开DFS Locations,如下图所示,双击打开part-r00000查看结果
http://images.cnitblog.com/blog/12097/201406/221638395517609.png
  参考:
  http://www.cnblogs.com/kinglau/p/3802705.html


页: [1]
查看完整版本: Eclipse下搭建Hadoop2.7.0开发环境