一总 发表于 2019-1-30 09:38:03

Flume NG 学习笔记(二)单机与集群Flume 配置

下面的内容基本来自官网:http://flume.apache.org/FlumeUserGuide.html
本文使用的是最新版本的apache flume 1.5,安装完Flume然后测试下Flume是否可以用,在Flume目录下用以下语句测试:
bin/flume-ng agent -n$agent_name -c conf -f conf/flume-conf.properties.template
结果如图显示:
http://img.blog.csdn.net/20141022140540140?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9va2xvb2s1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast



Ok,我们接下去看下面常用架构、功能配置示例
一、最简单的单一代理Flume 配置

下面是配置文件:


   view plain copy

[*]  #文件名:single_case1.conf.conf
[*]  #配置内容:
[*]  #single_case1.conf.conf: A single-node Flume configuration
[*]  #Name the components on this agent
[*]  a1.sources= r1
[*]  a1.sinks= k1
[*]  a1.channels= c1
[*]     
[*]  #Describe/configure the source
[*]  a1.sources.r1.type= netcat
[*]  a1.sources.r1.bind= localhost
[*]  a1.sources.r1.port= 44444
[*]     
[*]  #Describe the sink
[*]  a1.sinks.k1.type= logger
[*]     
[*]  #Use a channel which buffers events in memory
[*]  a1.channels.c1.type= memory
[*]  a1.channels.c1.capacity= 1000
[*]  a1.channels.c1.transactionCapacity= 100
[*]     
[*]  #Bind the source and sink to the channel
[*]  a1.sources.r1.channels= c1
[*]  a1.sinks.k1.channel= c1
  




说明下,这里所有的例子都是将配置文件放到 $FLUME_HOME/conf 目录下,后面就不赘述了。

#敲命令
flume-ng agent -cconf -f conf/single_case1.conf -n a1 -Dflume.root.logger=INFO,console

#参数命令
-c conf 指定配置目录为conf
-f conf/single_case1.conf指定配置文件为conf/single_case1.conf
-n a1 指定agent名字为a1,需要与case1_example.conf中的一致
-Dflume.root.logger=INFO,console指定DEBUF模式在console输出INFO信息
具体参数命令请通过flume-nghelp查看

#然后在另一个终端进行测试
telnet 127.0.0.1 44444
http://img.blog.csdn.net/20141022140643375?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9va2xvb2s1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast



然后会看在之前启动的终端查看console输出到如下:
http://img.blog.csdn.net/20141022141103885?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9va2xvb2s1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast



这里会发现消息hello world! 输出了,而hello world! hello world!hello world!则被拦截了。因为在配置文件中,我们选择的输出方式为:a1.sinks.k1.type= logger
,即console输出,flume-ng针对logger是只显示16个字节的,剩下的都被sink截了。下面是源码
在LoggerSink.Java中:


   view plain copy

[*]  if(event != null) {
[*]         if (logger.isInfoEnabled()) {
[*]           logger.info("Event: " + EventHelper.dumpEvent(event));
[*]         }
[*]  }
  



我们去看EventHelper.java的dumpEvent方法:


   view plain copy

[*]  privatestatic final int DEFAULT_MAX_BYTES = 16;
[*]  publicstatic String dumpEvent(Event event) {
[*]     return dumpEvent(event, DEFAULT_MAX_BYTES);
[*]  }
[*]     
[*]  publicstatic String dumpEvent(Event event, int maxBytes) {
[*]     StringBuilder buffer = new StringBuilder();
[*]     if (event == null || event.getBody() == null) {
[*]     buffer.append("null");
[*]     } else if (event.getBody().length == 0) {
[*]     // do nothing... in this case, HexDump.dump() will throw anexception
[*]     } else {
[*]     byte[] body = event.getBody();
[*]     byte[] data = Arrays.copyOf(body, Math.min(body.length,maxBytes));
[*]     ByteArrayOutputStream out = new ByteArrayOutputStream();
[*]     try {
[*]         HexDump.dump(data, 0, out, 0);
[*]         String hexDump = new String(out.toByteArray());
[*]         // remove offset since it's not relevant for such a smalldataset
[*]         if(hexDump.startsWith(HEXDUMP_OFFSET)) {
[*]           hexDump =hexDump.substring(HEXDUMP_OFFSET.length());
[*]         }
[*]         buffer.append(hexDump);
[*]     } catch (Exception e) {
[*]        if(LOGGER.isInfoEnabled()) {
[*]        LOGGER.info("Exception while dumpingevent", e);
[*]        }
[*]         buffer.append("...Exception while dumping:").append(e.getMessage());
[*]     }
[*]     String result = buffer.toString();
[*]     if(result.endsWith(EOL) && buffer.length() >EOL.length()) {
[*]         buffer.delete(buffer.length() - EOL.length(),buffer.length()).toString();
[*]     }
[*]     }
[*]     return "{ headers:" + event.getHeaders() + " body:"+ buffer + " }";
[*]   }
  



不难看出,在event处理过程中,发生了数据截取操作。
Ok,进入下一个环节。

二、“集群”代理Flume 配置
http://img.blog.csdn.net/20141022141145881?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9va2xvb2s1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast



这里集群的概念是多台机器的管理,最简单的就是两台机器一台代理主机从数据源获取数据,然后将数据在传送到另一台主机上,进行输出。这样做的意义是,一个业务多数据源的时候,我们可以对每个数据源设置代理,然后将它们汇总到一台代理主机上进行输出。
下面实现最简单的集群配置,即两个代理,一台接受数据源数据的代理将数据推送到汇总的代理,而汇总的代理再将数据输出。因此这两台主机分别是push,pull
根据上图需要用AVRO RPC通信,因此推数据sinks类型与拉数据的sources的类型都是avro 。而拉数据代理的数据源,我们用前文讲的Spool Source 形式来处理,这里我们预先建好目录与文件,test.log
http://img.blog.csdn.net/20141022140833562?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9va2xvb2s1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast



下面设置推代理主机的flume配置文件:


   view plain copy

[*]  #推数据代理的配置文件push.conf
[*]  #Name the components on this agent
[*]  a2.sources= r1
[*]  a2.sinks= k1
[*]  a2.channels= c1
[*]     
[*]  #Describe/configure the source
[*]  a2.sources.r1.type= spooldir
[*]  a2.sources.r1.spoolDir= /tmp/logs
[*]  a2.sources.r1.channels= c1
[*]     
[*]  #Use a channel which buffers events in memory
[*]  a2.channels.c1.type= memory
[*]  a2.channels.c1.keep-alive= 10
[*]  a2.channels.c1.capacity= 100000
[*]  a2.channels.c1.transactionCapacity= 100000
[*]     
[*]  #Describe/configure the source
[*]  a2.sinks.k1.type= avro
[*]  a2.sinks.k1.channel= c1
[*]  a2.sinks.k1.hostname= pull
[*]  a2.sinks.k1.port= 4444
  




下面设置汇总代理主机的flume配置文件:


   view plain copy

[*]  #汇总数据代理的配置文件pull.conf
[*]  #Name the components on this agent
[*]  a1.sources= r1
[*]  a1.sinks= k1
[*]  a1.channels= c1
[*]     
[*]  #Describe/configure the source
[*]  a1.sources.r1.type= avro
[*]  a1.sources.r1.channels= c1
[*]  a1.sources.r1.bind= pull
[*]  a1.sources.r1.port= 44444
[*]     
[*]  #Describe the sink
[*]  a1.sinks.k1.type= logger
[*]   a1.sinks.k1.channel = c1
[*]     
[*]  #Use a channel which buffers events in memory
[*]  a1.channels.c1.type= memory
[*]  a1.channels.c1.keep-alive= 10
[*]  a1.channels.c1.capacity= 100000
[*]  a1.channels.c1.transactionCapacity= 100000
  




虽然Spool Source是非实时的,但由于数据量少,处理还是很快的,因此我们只能先启动pull代理。
#敲命令
flume-ng agent -c conf -f conf/pull.conf -n a1 -Dflume.root.logger=INFO,console
http://img.blog.csdn.net/20141022141334426?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9va2xvb2s1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast


上图显示成功。
先后去启动push主机的flume
#敲命令
flume-ng agent -n a2 -c conf -f conf/push.conf -Dflume.root.logger=INFO,console
http://img.blog.csdn.net/20141022141247064?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9va2xvb2s1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast





查看pull主机的状态,发现数据已经传过来了。
然后会过去看push主机的文件
http://img.blog.csdn.net/20141022141420945?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9va2xvb2s1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

已经加上后缀名.COMPLETED。这与前文说的是一致的。

下面只要将新数据存入到目录/tmp/logs,push主机就会将数据发送到pull主机输出,并修改新数据文件的文件名。
  




页: [1]
查看完整版本: Flume NG 学习笔记(二)单机与集群Flume 配置