378 发表于 2019-1-31 08:07:23

通过案例对SparkStreaming 透彻理解三板斧之一

  王家林:DT大数据梦工厂创始人和首席专家.
  联系邮箱18610086859@126.com
  电话:18610086859 QQ:1740415547 微信号:18610086859
  spark的核心是spark core,spark streaming,spark graph,spark mlib 其实是构建在spark core之上的一个应用程序,如果要构建一个强大的spark应用程序 ,spark streaming 是一个值得借鉴的参考,spark streaming涉及多个job交叉配合,里面涉及到了spark的所有的核心组件,如果对spark streaming 精通了的话,可以说就精通了整个spark,所以精通掌握spark streaming是至关重要的。
  spark另类实现。在试验中。通过调节放大Batch Interval的方式300s,观察数据流入流出。
  object OnlineBlackListFilter {
  def main(args: Array){
  /**
  * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息,
  * 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置
  * 为local,则代表Spark程序在本地运行,特别适合于机器配置条件非常差(例如
  * 只有1G的内存)的初学者       *
  */
  val conf = new SparkConf() //创建SparkConf对象
  conf.setAppName("OnlineBlackListFilter") //设置应用程序的名称,在程序运行的监控界面可以看到名称
  conf.setMaster("spark://Master:7077") //此时,程序在Spark集群
  val ssc = new StreamingContext(conf, Seconds(300))
  /**
  * 黑名单数据准备,实际上黑名单一般都是动态的,例如在Redis或者数据库中,黑名单的生成往往有复杂的业务
  * 逻辑,具体情况算法不同,但是在Spark Streaming进行处理的时候每次都能工访问完整的信息
  */
  val blackList = Array(("hadoop", true),("mahout", true))
  val blackListRDD = ssc.sparkContext.parallelize(blackList, 8)
  val adsClickStream = ssc.socketTextStream("Master", 9999)
  /**
  * 此处模拟的广告点击的每条数据的格式为:time、name
  * 此处map操作的结果是name、(time,name)的格式
  */
  val adsClickStreamFormatted = adsClickStream.map { ads => (ads.split(" ")(1), ads) }
  adsClickStreamFormatted.transform(userClickRDD => {
  //通过leftOuterJoin操作既保留了左侧用户广告点击内容的RDD的所有内容,又获得了相应点击内容是否在黑名单中
  val joinedBlackListRDD = userClickRDD.leftOuterJoin(blackListRDD)
  /**
  * 进行filter过滤的时候,其输入元素是一个Tuple:(name,((time,name), boolean))
  * 其中第一个元素是黑名单的名称,第二元素的第二个元素是进行leftOuterJoin的时候是否存在在值
  * 如果存在的话,表面当前广告点击是黑名单,需要过滤掉,否则的话则是有效点击内容;
  */
  val validClicked = joinedBlackListRDD.filter(joinedItem => {
  if(joinedItem._2._2.getOrElse(false))
  {
  false
  } else {
  true
  }
  })
  validClicked.map(validClick => {validClick._2._1})
  }).print
  /**
  * 计算后的有效数据一般都会写入Kafka中,下游的计费系统会从kafka中pull到有效数据进行计费
  */
  ssc.start()
  ssc.awaitTermination()
  }
  }
  打开9999端口 nc -lk 9999
  输入测试数据
  2255554 Spark
  455554444 Hadoop
  55555 Flink
  66666 Kafka
  6666855 RockySpark
  666638 Scala
  66666 DT_Spark
  在浏览器history_server中查看
http://note.youdao.com/yws/res/27/WEBRESOURCE603e66dc7502ef28d360550bc6e11213
  点击最上面的任务后
http://note.youdao.com/yws/res/31/WEBRESOURCE2ce1d3a7a81a91668c138a2a00952409
  总共竟然有5个Job。
  job0主要用于负载均衡
  job1的时间是1.5min, 从各个job所花的时间来看,整个应用运行的时间大部分时间是花在了receiver上
  job2的时间
http://note.youdao.com/yws/res/39/WEBRESOURCEf207f2ebe58f0046813cefdb15a739bf
http://note.youdao.com/yws/res/42/WEBRESOURCE1007dce58cce11498a1bbe5bd31878ae
  Spark Streaming的一个应用中,运行了这么多Job

页: [1]
查看完整版本: 通过案例对SparkStreaming 透彻理解三板斧之一