潇洒紫焰 发表于 2015-7-21 11:01:46

【redis源码】(七)Dict.c

  无疑,作为key-value的nosql存储工具,redis中最核心的数据结构便是dict本身了。 哈希表作为查找效率 O(1)的数据结构,本身也存在着一些局限性,如hash算法的选择,怎样做到元素在桶内的均匀分布,及当哈希表内元素数量增多时,如果处理随着增加的碰撞,碰撞如果较深,会严重影响哈希表的效率
  
  redis中的dict便是hash实现的一个很好的范例,dict的实现中最巧妙地细节便是采用了类似双buffer的hash扩容方式,及缓慢的哈希表转移算法。
  1. 哈希表扩容方式【双buffer的hash表结构】



1 typedef struct dict {
2   dictType *type;
3   void *privdata;
4   dictht ht;
5   int rehashidx; /* rehashing not in progress if rehashidx == -1 */
6   int iterators; /* number of iterators currently running */
7 } dict;
  如代码所示,在哈希表resizing的过程中,ht和ht两个哈希表同时工作,直到ht中的元素完全转移到ht中来
  2. 哈希表转移过程是平滑缓慢的
  哈希表的转移并不是一步到位的,这里作者应该是考虑到,在哈希表很大的情况下,如果一次性的对哈希表进行转移操作,会引起性能抖动,所以以两种转移触发条件来对哈希表进行转移
  a. 在每次哈希表进行查询或者更新操作时,转移一个元素



1 static void _dictRehashStep(dict *d) {
2   if (d->iterators == 0) dictRehash(d,1);
3 }
  b. 会有定时操作,每次执行指定长度时间的转移操作,粒度是每次100个元素【具体由谁来触发,还需要进一步看代码】



1 int dictRehashMilliseconds(dict *d, int ms) {
2   long long start = timeInMilliseconds();
3   int rehashes = 0;
4
5   while(dictRehash(d,100)) {
6         rehashes += 100;
7         if (timeInMilliseconds()-start > ms) break;
8   }
9   return rehashes;
10 }
  
  
  
  好了,开始贴代码
  dict.h



1 #ifndef __DICT_H
2 #define __DICT_H
3
4 #define DICT_OK 0
5 #define DICT_ERR 1
6
7 /* Unused arguments generate annoying warnings... */
8 #define DICT_NOTUSED(V) ((void) V)
9
10 typedef struct dictEntry {
11   void *key;
12   void *val;
13   struct dictEntry *next;
14 } dictEntry;
15
16 typedef struct dictType {
17   unsigned int (*hashFunction)(const void *key);
18   void *(*keyDup)(void *privdata, const void *key);
19   void *(*valDup)(void *privdata, const void *obj);
20   int (*keyCompare)(void *privdata, const void *key1, const void *key2);
21   void (*keyDestructor)(void *privdata, void *key);
22   void (*valDestructor)(void *privdata, void *obj);
23 } dictType;
24
25 /* This is our hash table structure. Every dictionary has two of this as we
26* implement incremental rehashing, for the old to the new table. */
27 typedef struct dictht {
28   dictEntry **table;
29   unsigned long size;
30   unsigned long sizemask;
31   unsigned long used;
32 } dictht;
33
34 typedef struct dict {
35   dictType *type;
36   void *privdata;
37   dictht ht;
38   int rehashidx; /* rehashing not in progress if rehashidx == -1 */
39   int iterators; /* number of iterators currently running */
40 } dict;
41
42 /* If safe is set to 1 this is a safe iteartor, that means, you can call
43* dictAdd, dictFind, and other functions against the dictionary even while
44* iterating. Otherwise it is a non safe iterator, and only dictNext()
45* should be called while iterating. */
46 typedef struct dictIterator {
47   dict *d;
48   int table, index, safe;
49   dictEntry *entry, *nextEntry;
50 } dictIterator;
51
52 /* This is the initial size of every hash table */
53 #define DICT_HT_INITIAL_SIZE   4
54
55 /* ------------------------------- Macros ------------------------------------*/
56 #define dictFreeEntryVal(d, entry) \
57   if ((d)->type->valDestructor) \
58         (d)->type->valDestructor((d)->privdata, (entry)->val)
59
60 #define dictSetHashVal(d, entry, _val_) do { \
61   if ((d)->type->valDup) \
62         entry->val = (d)->type->valDup((d)->privdata, _val_); \
63   else \
64         entry->val = (_val_); \
65 } while(0)
66
67 #define dictFreeEntryKey(d, entry) \
68   if ((d)->type->keyDestructor) \
69         (d)->type->keyDestructor((d)->privdata, (entry)->key)
70
71 #define dictSetHashKey(d, entry, _key_) do { \
72   if ((d)->type->keyDup) \
73         entry->key = (d)->type->keyDup((d)->privdata, _key_); \
74   else \
75         entry->key = (_key_); \
76 } while(0)
77
78 #define dictCompareHashKeys(d, key1, key2) \
79   (((d)->type->keyCompare) ? \
80         (d)->type->keyCompare((d)->privdata, key1, key2) : \
81         (key1) == (key2))
82
83 #define dictHashKey(d, key) (d)->type->hashFunction(key)
84
85 #define dictGetEntryKey(he) ((he)->key)
86 #define dictGetEntryVal(he) ((he)->val)
87 #define dictSlots(d) ((d)->ht.size+(d)->ht.size)
88 #define dictSize(d) ((d)->ht.used+(d)->ht.used)
89 #define dictIsRehashing(ht) ((ht)->rehashidx != -1)
90
91 /* API */
92 dict *dictCreate(dictType *type, void *privDataPtr);
93 int dictExpand(dict *d, unsigned long size);
94 int dictAdd(dict *d, void *key, void *val);
95 int dictReplace(dict *d, void *key, void *val);
96 int dictDelete(dict *d, const void *key);
97 int dictDeleteNoFree(dict *d, const void *key);
98 void dictRelease(dict *d);
99 dictEntry * dictFind(dict *d, const void *key);
100 void *dictFetchValue(dict *d, const void *key);
101 int dictResize(dict *d);
102 dictIterator *dictGetIterator(dict *d);
103 dictIterator *dictGetSafeIterator(dict *d);
104 dictEntry *dictNext(dictIterator *iter);
105 void dictReleaseIterator(dictIterator *iter);
106 dictEntry *dictGetRandomKey(dict *d);
107 void dictPrintStats(dict *d);
108 unsigned int dictGenHashFunction(const unsigned char *buf, int len);
109 unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len);
110 void dictEmpty(dict *d);
111 void dictEnableResize(void);
112 void dictDisableResize(void);
113 int dictRehash(dict *d, int n);
114 int dictRehashMilliseconds(dict *d, int ms);
115
116 /* Hash table types */
117 extern dictType dictTypeHeapStringCopyKey;
118 extern dictType dictTypeHeapStrings;
119 extern dictType dictTypeHeapStringCopyKeyValue;
120
121 #endif /* __DICT_H */
  dict.c



1 #include "fmacros.h"
2
3 #include
4 #include
5 #include
6 #include
7 #include
8 #include
9 #include
10 #include
11
12 #include "dict.h"
13 #include "zmalloc.h"
14
15 /* Using dictEnableResize() / dictDisableResize() we make possible to
16* enable/disable resizing of the hash table as needed. This is very important
17* for Redis, as we use copy-on-write and don't want to move too much memory
18* around when there is a child performing saving operations.
19*
20* Note that even when dict_can_resize is set to 0, not all resizes are
21* prevented: an hash table is still allowed to grow if the ratio between
22* the number of elements and the buckets > dict_force_resize_ratio. */
23 static int dict_can_resize = 1;
24 static unsigned int dict_force_resize_ratio = 5;
25
26 /* -------------------------- private prototypes ---------------------------- */
27
28 //扩展dict中桶的数量
29 static int _dictExpandIfNeeded(dict *ht);
30 //得到扩展后的dict应有的桶的数量,这个数量是2的幂次
31 static unsigned long _dictNextPower(unsigned long size);
32 //如果插入key,返回其在哈希表ht中应存方的hashentry的index,如果
33 //ht正在resizing,则返回在ht中的index
34 static int _dictKeyIndex(dict *ht, const void *key);
35 //初始化dict,初始化一个哈希表
36 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
37
38 /* -------------------------- hash functions -------------------------------- */
39 //一系列哈希函数
40 /* Thomas Wang's 32 bit Mix Function */
41 unsigned int dictIntHashFunction(unsigned int key)
42 {
43   key += ~(key > 10);
45   key +=(key > 6);
47   key += ~(key > 16);
49   return key;
50 }
51
52 /* Identity hash function for integer keys */
53 unsigned int dictIdentityHashFunction(unsigned int key)
54 {
55   return key;
56 }
57
58 /* Generic hash function (a popular one from Bernstein).
59* I tested a few and this was the best. */
60 unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
61   unsigned int hash = 5381;
62
63   while (len--)
64         hash = ((hash size = 0;
85   ht->sizemask = 0;
86   ht->used = 0;
87 }
88 //初始化一个新的哈希表结构,并且调用_dictInit对其进行初始化
89 /* Create a new hash table */
90 dict *dictCreate(dictType *type,
91         void *privDataPtr)
92 {
93   dict *d = zmalloc(sizeof(*d));
94
95   _dictInit(d,type,privDataPtr);
96   return d;
97 }
98
99 //初始化哈希表
100 /* Initialize the hash table */
101 int _dictInit(dict *d, dictType *type,
102         void *privDataPtr)
103 {
104   _dictReset(&d->ht);
105   _dictReset(&d->ht);
106   d->type = type;
107   d->privdata = privDataPtr;
108   d->rehashidx = -1;
109   d->iterators = 0;
110   return DICT_OK;
111 }
112
113 //resize哈希表d,如果entry数量小于默认初始值,将其置为初始值
114 //否则将其置为与保存的元素数量相同
115 /* Resize the table to the minimal size that contains all the elements,
116* but with the invariant of a USER/BUCKETS ratio near to ht.used;
123   if (minimal < DICT_HT_INITIAL_SIZE)
124         minimal = DICT_HT_INITIAL_SIZE;
125   return dictExpand(d, minimal);
126 }
127
128
129 //根据size,得到下一个hash的size,应该是2的幂次
130 //如果size的大小小于目前元素的数量,或者dict正在resize,则终止expanding
131 //如果确定可以resize,申请一个newsize大小的dicthashtable,并为其初始化
132 /* Expand or create the hashtable */
133 int dictExpand(dict *d, unsigned long size)
134 {
135   dictht n; /* the new hashtable */
136   unsigned long realsize = _dictNextPower(size);
137
138   /* the size is invalid if it is smaller than the number of
139      * elements already inside the hashtable */
140   if (dictIsRehashing(d) || d->ht.used > size)
141         return DICT_ERR;
142
143   /* Allocate the new hashtable and initialize all pointers to NULL */
144   n.size = realsize;
145   n.sizemask = realsize-1;
146   n.table = zcalloc(realsize*sizeof(dictEntry*));
147   n.used = 0;
148
149   /* Is this the first initialization? If so it's not really a rehashing
150      * we just set the first hash table so that it can accept keys. */
151   if (d->ht.table == NULL) {
152         d->ht = n;
153         return DICT_OK;
154   }
155
156   /* Prepare a second hash table for incremental rehashing */
157   d->ht = n;
158   d->rehashidx = 0;
159   return DICT_OK;
160 }
161
162
163
164 //rehashing 操作需要n步来执行,一次rehash一个元素,这样一点点的rehash
165 //可以避免性能波动
166 /* Performs N steps of incremental rehashing. Returns 1 if there are still
167* keys to move from the old to the new hash table, otherwise 0 is returned.
168* Note that a rehashing step consists in moving a bucket (that may have more
169* thank one key as we use chaining) from the old to the new hash table. */
170 int dictRehash(dict *d, int n) {
171   if (!dictIsRehashing(d)) return 0;
172
173   while(n--) {
174         dictEntry *de, *nextde;
175
176         /* Check if we already rehashed the whole table... */
177         if (d->ht.used == 0) {
178             zfree(d->ht.table);
179             d->ht = d->ht;
180             _dictReset(&d->ht);
181             d->rehashidx = -1;
182             return 0;
183         }
184
185         /* Note that rehashidx can't overflow as we are sure there are more
186          * elements because ht.used != 0 */
187         while(d->ht.table == NULL) d->rehashidx++;
188         de = d->ht.table;
189         /* Move all the keys in this bucket from the old to the new hash HT */
190         while(de) {
191             unsigned int h;
192
193             nextde = de->next;
194             /* Get the index in the new hash table */
195             h = dictHashKey(d, de->key) & d->ht.sizemask;
196             de->next = d->ht.table;
197             d->ht.table = de;
198             d->ht.used--;
199             d->ht.used++;
200             de = nextde;
201         }
202         d->ht.table = NULL;
203         d->rehashidx++;
204   }
205   return 1;
206 }
207
208 //得到以毫秒为单位的当前时间
209 long long timeInMilliseconds(void) {
210   struct timeval tv;
211
212   gettimeofday(&tv,NULL);
213   return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
214 }
215 //每次执行一定时间的rehashing操作,这次rehasing的时间不超过ms毫秒
216 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
217 int dictRehashMilliseconds(dict *d, int ms) {
218   long long start = timeInMilliseconds();
219   int rehashes = 0;
220
221   while(dictRehash(d,100)) {
222         rehashes += 100;
223         if (timeInMilliseconds()-start > ms) break;
224   }
225   return rehashes;
226 }
227
228
229 //这个函数执行一次rehashing,即移动一个元素。
230 //这个函数在任何一次查询或者更新操作时会被调用
231 //将rehashing的性能消耗分布在每一步
232 /* This function performs just a step of rehashing, and only if there are
233* no safe iterators bound to our hash table. When we have iterators in the
234* middle of a rehashing we can't mess with the two hash tables otherwise
235* some element can be missed or duplicated.
236*
237* This function is called by common lookup or update operations in the
238* dictionary so that the hash table automatically migrates from H1 to H2
239* while it is actively used. */
240 static void _dictRehashStep(dict *d) {
241   if (d->iterators == 0) dictRehash(d,1);
242 }
243
244 //在d中增加一个键值对
245 /* Add an element to the target hash table */
246 int dictAdd(dict *d, void *key, void *val)
247 {
248   int index;
249   dictEntry *entry;
250   dictht *ht;
251
252   if (dictIsRehashing(d)) _dictRehashStep(d);
253
254   /* Get the index of the new element, or -1 if
255      * the element already exists. */
256   if ((index = _dictKeyIndex(d, key)) == -1)
257         return DICT_ERR;
258
259   /* Allocates the memory and stores key */
260   ht = dictIsRehashing(d) ? &d->ht : &d->ht;
261   entry = zmalloc(sizeof(*entry));
262   entry->next = ht->table;
263   ht->table = entry;
264   ht->used++;
265
266   /* Set the hash entry fields. */
267   dictSetHashKey(d, entry, key);
268   dictSetHashVal(d, entry, val);
269   return DICT_OK;
270 }
271
272 //增加一个元素,如果存在,替换
273 /* Add an element, discarding the old if the key already exists.
274* Return 1 if the key was added from scratch, 0 if there was already an
275* element with such key and dictReplace() just performed a value update
276* operation. */
277 int dictReplace(dict *d, void *key, void *val)
278 {
279   dictEntry *entry, auxentry;
280
281   /* Try to add the element. If the key
282      * does not exists dictAdd will suceed. */
283   if (dictAdd(d, key, val) == DICT_OK)
284         return 1;
285   /* It already exists, get the entry */
286   entry = dictFind(d, key);
287   /* Free the old value and set the new one */
288   /* Set the new value and free the old one. Note that it is important
289      * to do that in this order, as the value may just be exactly the same
290      * as the previous one. In this context, think to reference counting,
291      * you want to increment (set), and then decrement (free), and not the
292      * reverse. */
293   auxentry = *entry;
294   dictSetHashVal(d, entry, val);
295   dictFreeEntryVal(d, &auxentry);
296   return 0;
297 }
298
299 //删除一个元素
300 /* Search and remove an element */
301 static int dictGenericDelete(dict *d, const void *key, int nofree)
302 {
303   unsigned int h, idx;
304   dictEntry *he, *prevHe;
305   int table;
306
307   if (d->ht.size == 0) return DICT_ERR; /* d->ht.table is NULL */
308   if (dictIsRehashing(d)) _dictRehashStep(d);
309   h = dictHashKey(d, key);
310
311   for (table = 0; table ht.sizemask;
313         he = d->ht.table;
314         prevHe = NULL;
315         while(he) {
316             if (dictCompareHashKeys(d, key, he->key)) {
317               /* Unlink the element from the list */
318               if (prevHe)
319                     prevHe->next = he->next;
320               else
321                     d->ht.table = he->next;
322               if (!nofree) {
323                     dictFreeEntryKey(d, he);
324                     dictFreeEntryVal(d, he);
325               }
326               zfree(he);
327               d->ht.used--;
328               return DICT_OK;
329             }
330             prevHe = he;
331             he = he->next;
332         }
333         if (!dictIsRehashing(d)) break;
334   }
335   return DICT_ERR; /* not found */
336 }
337
338 //删除ht中的一个元素
339 int dictDelete(dict *ht, const void *key) {
340   return dictGenericDelete(ht,key,0);
341 }
342
343 //删除一个袁术,不释放old键值对的空间
344 int dictDeleteNoFree(dict *ht, const void *key) {
345   return dictGenericDelete(ht,key,1);
346 }
347
348 //释放d中的dictht ht及其中所有的keyvalue对
349 /* Destroy an entire dictionary */
350 int _dictClear(dict *d, dictht *ht)
351 {
352   unsigned long i;
353
354   /* Free all the elements */
355   for (i = 0; i < ht->size && ht->used > 0; i++) {
356         dictEntry *he, *nextHe;
357
358         if ((he = ht->table) == NULL) continue;
359         while(he) {
360             nextHe = he->next;
361             dictFreeEntryKey(d, he);
362             dictFreeEntryVal(d, he);
363             zfree(he);
364             ht->used--;
365             he = nextHe;
366         }
367   }
368   /* Free the table and the allocated cache structure */
369   zfree(ht->table);
370   /* Re-initialize the table */
371   _dictReset(ht);
372   return DICT_OK; /* never fails */
373 }
374
375 //释放整个哈希表
376 /* Clear & Release the hash table */
377 void dictRelease(dict *d)
378 {
379   _dictClear(d,&d->ht);
380   _dictClear(d,&d->ht);
381   zfree(d);
382 }
383
384 //找到key所在的entry
385 dictEntry *dictFind(dict *d, const void *key)
386 {
387   dictEntry *he;
388   unsigned int h, idx, table;
389
390   if (d->ht.size == 0) return NULL; /* We don't have a table at all */
391   if (dictIsRehashing(d)) _dictRehashStep(d);
392   h = dictHashKey(d, key);
393   for (table = 0; table ht.sizemask;
395         he = d->ht.table;
396         while(he) {
397             if (dictCompareHashKeys(d, key, he->key))
398               return he;
399             he = he->next;
400         }
401         if (!dictIsRehashing(d)) return NULL;
402   }
403   return NULL;
404 }
405
406 //拿到key的value,如果不存在,返回NULL
407 void *dictFetchValue(dict *d, const void *key) {
408   dictEntry *he;
409
410   he = dictFind(d,key);
411   return he ? dictGetEntryVal(he) : NULL;
412 }
413
414 //拿到dict的iterator
415 dictIterator *dictGetIterator(dict *d)
416 {
417   dictIterator *iter = zmalloc(sizeof(*iter));
418
419   iter->d = d;
420   iter->table = 0;
421   iter->index = -1;
422   iter->safe = 0;
423   iter->entry = NULL;
424   iter->nextEntry = NULL;
425   return iter;
426 }
427
428 //得到safe的iterator
429 //如果iterator是safe的,则可以进行修改操作,否则,只能执行dictNext
430 dictIterator *dictGetSafeIterator(dict *d) {
431   dictIterator *i = dictGetIterator(d);
432
433   i->safe = 1;
434   return i;
435 }
436
437 //得到iter的下一个元素
438 dictEntry *dictNext(dictIterator *iter)
439 {
440   while (1) {
441         if (iter->entry == NULL) {
442             dictht *ht = &iter->d->ht;
443             if (iter->safe && iter->index == -1 && iter->table == 0)
444               iter->d->iterators++;
445             iter->index++;
446             if (iter->index >= (signed) ht->size) {
447               if (dictIsRehashing(iter->d) && iter->table == 0) {
448                     iter->table++;
449                     iter->index = 0;
450                     ht = &iter->d->ht;
451               } else {
452                     break;
453               }
454             }
455             iter->entry = ht->table;
456         } else {
457             iter->entry = iter->nextEntry;
458         }
459         if (iter->entry) {
460             /* We need to save the 'next' here, the iterator user
461            * may delete the entry we are returning. */
462             iter->nextEntry = iter->entry->next;
463             return iter->entry;
464         }
465   }
466   return NULL;
467 }
468
469 //释放哈希表的iterator
470 void dictReleaseIterator(dictIterator *iter)
471 {
472   if (iter->safe && !(iter->index == -1 && iter->table == 0))
473         iter->d->iterators--;
474   zfree(iter);
475 }
476
477 /* Return a random entry from the hash table. Useful to
478* implement randomized algorithms */
479//得到一个随机key
480 dictEntry *dictGetRandomKey(dict *d)
481 {
482   dictEntry *he, *orighe;
483   unsigned int h;
484   int listlen, listele;
485
486   if (dictSize(d) == 0) return NULL;
487   if (dictIsRehashing(d)) _dictRehashStep(d);
488   if (dictIsRehashing(d)) {
489         do {
490             h = random() % (d->ht.size+d->ht.size);
491             he = (h >= d->ht.size) ? d->ht.table.size] :
492                                       d->ht.table;
493         } while(he == NULL);
494   } else {
495         do {
496             h = random() & d->ht.sizemask;
497             he = d->ht.table;
498         } while(he == NULL);
499   }
500
501   /* Now we found a non empty bucket, but it is a linked
502      * list and we need to get a random element from the list.
503      * The only sane way to do so is counting the elements and
504      * select a random index. */
505   listlen = 0;
506   orighe = he;
507   while(he) {
508         he = he->next;
509         listlen++;
510   }
511   listele = random() % listlen;
512   he = orighe;
513   while(listele--) he = he->next;
514   return he;
515 }
516
517 /* ------------------------- private functions ------------------------------ */
518
519 /* Expand the hash table if needed */
520 //如果哈希表需要resize,则执行dictexpand
521 static int _dictExpandIfNeeded(dict *d)
522 {
523   /* Incremental rehashing already in progress. Return. */
524   if (dictIsRehashing(d)) return DICT_OK;
525
526   /* If the hash table is empty expand it to the intial size. */
527   if (d->ht.size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
528
529   /* If we reached the 1:1 ratio, and we are allowed to resize the hash
530      * table (global setting) or we should avoid it but the ratio between
531      * elements/buckets is over the "safe" threshold, we resize doubling
532      * the number of buckets. */
533   if (d->ht.used >= d->ht.size &&
534         (dict_can_resize ||
535          d->ht.used/d->ht.size > dict_force_resize_ratio))
536   {
537         return dictExpand(d, ((d->ht.size > d->ht.used) ?
538                                     d->ht.size : d->ht.used)*2);
539   }
540   return DICT_OK;
541 }
542
543 //根据size,得到比size大的最小的一个2的幂次数作为新哈希表的size值
544 /* Our hash table capability is a power of two */
545 static unsigned long _dictNextPower(unsigned long size)
546 {
547   unsigned long i = DICT_HT_INITIAL_SIZE;
548
549   if (size >= LONG_MAX) return LONG_MAX;
550   while(1) {
551         if (i >= size)
552             return i;
553         i *= 2;
554   }
555 }
556
557
558 //返回key在d中所在的index值,如果已经存在,则返回-1,否则返回所在entry的index值
559 /* Returns the index of a free slot that can be populated with
560* an hash entry for the given 'key'.
561* If the key already exists, -1 is returned.
562*
563* Note that if we are in the process of rehashing the hash table, the
564* index is always returned in the context of the second (new) hash table. */
565 static int _dictKeyIndex(dict *d, const void *key)
566 {
567   unsigned int h, idx, table;
568   dictEntry *he;
569
570   /* Expand the hashtable if needed */
571   if (_dictExpandIfNeeded(d) == DICT_ERR)
572         return -1;
573   /* Compute the key hash value */
574   h = dictHashKey(d, key);
575   for (table = 0; table ht.sizemask;
577         /* Search if this slot does not already contain the given key */
578         he = d->ht.table;
579         while(he) {
580             if (dictCompareHashKeys(d, key, he->key))
581               return -1;
582             he = he->next;
583         }
584         if (!dictIsRehashing(d)) break;
585   }
586   return idx;
587 }
588
589 //清空哈希表d
590 void dictEmpty(dict *d) {
591   _dictClear(d,&d->ht);
592   _dictClear(d,&d->ht);
593   d->rehashidx = -1;
594   d->iterators = 0;
595 }
596
597 #define DICT_STATS_VECTLEN 50
598 static void _dictPrintStatsHt(dictht *ht) {
599   unsigned long i, slots = 0, chainlen, maxchainlen = 0;
600   unsigned long totchainlen = 0;
601   unsigned long clvector;
602
603   if (ht->used == 0) {
604         printf("No stats available for empty dictionaries\n");
605         return;
606   }
607
608   for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector = 0;
609   for (i = 0; i < ht->size; i++) {
610         dictEntry *he;
611
612         if (ht->table == NULL) {
613             clvector++;
614             continue;
615         }
616         slots++;
617         /* For each hash entry on this slot... */
618         chainlen = 0;
619         he = ht->table;
620         while(he) {
621             chainlen++;
622             he = he->next;
623         }
624         clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
625         if (chainlen > maxchainlen) maxchainlen = chainlen;
626         totchainlen += chainlen;
627   }
628   printf("Hash table stats:\n");
629   printf(" table size: %ld\n", ht->size);
630   printf(" number of elements: %ld\n", ht->used);
631   printf(" different slots: %ld\n", slots);
632   printf(" max chain length: %ld\n", maxchainlen);
633   printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
634   printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
635   printf(" Chain length distribution:\n");
636   for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
637         if (clvector == 0) continue;
638         printf("   %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector, ((float)clvector/ht->size)*100);
639   }
640 }
641
642 void dictPrintStats(dict *d) {
643   _dictPrintStatsHt(&d->ht);
644   if (dictIsRehashing(d)) {
645         printf("-- Rehashing into ht:\n");
646         _dictPrintStatsHt(&d->ht);
647   }
648 }
649
650 //打开rehashing的开关,允许条件满足时执行hashExpanding
651 void dictEnableResize(void) {
652   dict_can_resize = 1;
653 }
654
655 void dictDisableResize(void) {
656   dict_can_resize = 0;
657 }
658
659 #if 0
660
661 /* The following are just example hash table types implementations.
662* Not useful for Redis so they are commented out.
663*/
664
665 /* ----------------------- StringCopy Hash Table Type ------------------------*/
666
667 static unsigned int _dictStringCopyHTHashFunction(const void *key)
668 {
669   return dictGenHashFunction(key, strlen(key));
670 }
671
672 static void *_dictStringDup(void *privdata, const void *key)
673 {
674   int len = strlen(key);
675   char *copy = zmalloc(len+1);
676   DICT_NOTUSED(privdata);
677
678   memcpy(copy, key, len);
679   copy = '\0';
680   return copy;
681 }
682
683 static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
684         const void *key2)
685 {
686   DICT_NOTUSED(privdata);
687
688   return strcmp(key1, key2) == 0;
689 }
690
691 static void _dictStringDestructor(void *privdata, void *key)
692 {
693   DICT_NOTUSED(privdata);
694
695   zfree(key);
696 }
697
698 dictType dictTypeHeapStringCopyKey = {
699   _dictStringCopyHTHashFunction, /* hash function */
700   _dictStringDup,                /* key dup */
701   NULL,                        /* val dup */
702   _dictStringCopyHTKeyCompare,   /* key compare */
703   _dictStringDestructor,         /* key destructor */
704   NULL                           /* val destructor */
705 };
706
707 /* This is like StringCopy but does not auto-duplicate the key.
708* It's used for intepreter's shared strings. */
709 dictType dictTypeHeapStrings = {
710   _dictStringCopyHTHashFunction, /* hash function */
711   NULL,                        /* key dup */
712   NULL,                        /* val dup */
713   _dictStringCopyHTKeyCompare,   /* key compare */
714   _dictStringDestructor,         /* key destructor */
715   NULL                           /* val destructor */
716 };
717
718 /* This is like StringCopy but also automatically handle dynamic
719* allocated C strings as values. */
720 dictType dictTypeHeapStringCopyKeyValue = {
721   _dictStringCopyHTHashFunction, /* hash function */
722   _dictStringDup,                /* key dup */
723   _dictStringDup,                /* val dup */
724   _dictStringCopyHTKeyCompare,   /* key compare */
725   _dictStringDestructor,         /* key destructor */
726   _dictStringDestructor,         /* val destructor */
727 };
728 #endif
  
  
  
  
  
  
页: [1]
查看完整版本: 【redis源码】(七)Dict.c