【redis源码】(七)Dict.c
无疑,作为key-value的nosql存储工具,redis中最核心的数据结构便是dict本身了。 哈希表作为查找效率 O(1)的数据结构,本身也存在着一些局限性,如hash算法的选择,怎样做到元素在桶内的均匀分布,及当哈希表内元素数量增多时,如果处理随着增加的碰撞,碰撞如果较深,会严重影响哈希表的效率redis中的dict便是hash实现的一个很好的范例,dict的实现中最巧妙地细节便是采用了类似双buffer的hash扩容方式,及缓慢的哈希表转移算法。
1. 哈希表扩容方式【双buffer的hash表结构】
1 typedef struct dict {
2 dictType *type;
3 void *privdata;
4 dictht ht;
5 int rehashidx; /* rehashing not in progress if rehashidx == -1 */
6 int iterators; /* number of iterators currently running */
7 } dict;
如代码所示,在哈希表resizing的过程中,ht和ht两个哈希表同时工作,直到ht中的元素完全转移到ht中来
2. 哈希表转移过程是平滑缓慢的
哈希表的转移并不是一步到位的,这里作者应该是考虑到,在哈希表很大的情况下,如果一次性的对哈希表进行转移操作,会引起性能抖动,所以以两种转移触发条件来对哈希表进行转移
a. 在每次哈希表进行查询或者更新操作时,转移一个元素
1 static void _dictRehashStep(dict *d) {
2 if (d->iterators == 0) dictRehash(d,1);
3 }
b. 会有定时操作,每次执行指定长度时间的转移操作,粒度是每次100个元素【具体由谁来触发,还需要进一步看代码】
1 int dictRehashMilliseconds(dict *d, int ms) {
2 long long start = timeInMilliseconds();
3 int rehashes = 0;
4
5 while(dictRehash(d,100)) {
6 rehashes += 100;
7 if (timeInMilliseconds()-start > ms) break;
8 }
9 return rehashes;
10 }
好了,开始贴代码
dict.h
1 #ifndef __DICT_H
2 #define __DICT_H
3
4 #define DICT_OK 0
5 #define DICT_ERR 1
6
7 /* Unused arguments generate annoying warnings... */
8 #define DICT_NOTUSED(V) ((void) V)
9
10 typedef struct dictEntry {
11 void *key;
12 void *val;
13 struct dictEntry *next;
14 } dictEntry;
15
16 typedef struct dictType {
17 unsigned int (*hashFunction)(const void *key);
18 void *(*keyDup)(void *privdata, const void *key);
19 void *(*valDup)(void *privdata, const void *obj);
20 int (*keyCompare)(void *privdata, const void *key1, const void *key2);
21 void (*keyDestructor)(void *privdata, void *key);
22 void (*valDestructor)(void *privdata, void *obj);
23 } dictType;
24
25 /* This is our hash table structure. Every dictionary has two of this as we
26* implement incremental rehashing, for the old to the new table. */
27 typedef struct dictht {
28 dictEntry **table;
29 unsigned long size;
30 unsigned long sizemask;
31 unsigned long used;
32 } dictht;
33
34 typedef struct dict {
35 dictType *type;
36 void *privdata;
37 dictht ht;
38 int rehashidx; /* rehashing not in progress if rehashidx == -1 */
39 int iterators; /* number of iterators currently running */
40 } dict;
41
42 /* If safe is set to 1 this is a safe iteartor, that means, you can call
43* dictAdd, dictFind, and other functions against the dictionary even while
44* iterating. Otherwise it is a non safe iterator, and only dictNext()
45* should be called while iterating. */
46 typedef struct dictIterator {
47 dict *d;
48 int table, index, safe;
49 dictEntry *entry, *nextEntry;
50 } dictIterator;
51
52 /* This is the initial size of every hash table */
53 #define DICT_HT_INITIAL_SIZE 4
54
55 /* ------------------------------- Macros ------------------------------------*/
56 #define dictFreeEntryVal(d, entry) \
57 if ((d)->type->valDestructor) \
58 (d)->type->valDestructor((d)->privdata, (entry)->val)
59
60 #define dictSetHashVal(d, entry, _val_) do { \
61 if ((d)->type->valDup) \
62 entry->val = (d)->type->valDup((d)->privdata, _val_); \
63 else \
64 entry->val = (_val_); \
65 } while(0)
66
67 #define dictFreeEntryKey(d, entry) \
68 if ((d)->type->keyDestructor) \
69 (d)->type->keyDestructor((d)->privdata, (entry)->key)
70
71 #define dictSetHashKey(d, entry, _key_) do { \
72 if ((d)->type->keyDup) \
73 entry->key = (d)->type->keyDup((d)->privdata, _key_); \
74 else \
75 entry->key = (_key_); \
76 } while(0)
77
78 #define dictCompareHashKeys(d, key1, key2) \
79 (((d)->type->keyCompare) ? \
80 (d)->type->keyCompare((d)->privdata, key1, key2) : \
81 (key1) == (key2))
82
83 #define dictHashKey(d, key) (d)->type->hashFunction(key)
84
85 #define dictGetEntryKey(he) ((he)->key)
86 #define dictGetEntryVal(he) ((he)->val)
87 #define dictSlots(d) ((d)->ht.size+(d)->ht.size)
88 #define dictSize(d) ((d)->ht.used+(d)->ht.used)
89 #define dictIsRehashing(ht) ((ht)->rehashidx != -1)
90
91 /* API */
92 dict *dictCreate(dictType *type, void *privDataPtr);
93 int dictExpand(dict *d, unsigned long size);
94 int dictAdd(dict *d, void *key, void *val);
95 int dictReplace(dict *d, void *key, void *val);
96 int dictDelete(dict *d, const void *key);
97 int dictDeleteNoFree(dict *d, const void *key);
98 void dictRelease(dict *d);
99 dictEntry * dictFind(dict *d, const void *key);
100 void *dictFetchValue(dict *d, const void *key);
101 int dictResize(dict *d);
102 dictIterator *dictGetIterator(dict *d);
103 dictIterator *dictGetSafeIterator(dict *d);
104 dictEntry *dictNext(dictIterator *iter);
105 void dictReleaseIterator(dictIterator *iter);
106 dictEntry *dictGetRandomKey(dict *d);
107 void dictPrintStats(dict *d);
108 unsigned int dictGenHashFunction(const unsigned char *buf, int len);
109 unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len);
110 void dictEmpty(dict *d);
111 void dictEnableResize(void);
112 void dictDisableResize(void);
113 int dictRehash(dict *d, int n);
114 int dictRehashMilliseconds(dict *d, int ms);
115
116 /* Hash table types */
117 extern dictType dictTypeHeapStringCopyKey;
118 extern dictType dictTypeHeapStrings;
119 extern dictType dictTypeHeapStringCopyKeyValue;
120
121 #endif /* __DICT_H */
dict.c
1 #include "fmacros.h"
2
3 #include
4 #include
5 #include
6 #include
7 #include
8 #include
9 #include
10 #include
11
12 #include "dict.h"
13 #include "zmalloc.h"
14
15 /* Using dictEnableResize() / dictDisableResize() we make possible to
16* enable/disable resizing of the hash table as needed. This is very important
17* for Redis, as we use copy-on-write and don't want to move too much memory
18* around when there is a child performing saving operations.
19*
20* Note that even when dict_can_resize is set to 0, not all resizes are
21* prevented: an hash table is still allowed to grow if the ratio between
22* the number of elements and the buckets > dict_force_resize_ratio. */
23 static int dict_can_resize = 1;
24 static unsigned int dict_force_resize_ratio = 5;
25
26 /* -------------------------- private prototypes ---------------------------- */
27
28 //扩展dict中桶的数量
29 static int _dictExpandIfNeeded(dict *ht);
30 //得到扩展后的dict应有的桶的数量,这个数量是2的幂次
31 static unsigned long _dictNextPower(unsigned long size);
32 //如果插入key,返回其在哈希表ht中应存方的hashentry的index,如果
33 //ht正在resizing,则返回在ht中的index
34 static int _dictKeyIndex(dict *ht, const void *key);
35 //初始化dict,初始化一个哈希表
36 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
37
38 /* -------------------------- hash functions -------------------------------- */
39 //一系列哈希函数
40 /* Thomas Wang's 32 bit Mix Function */
41 unsigned int dictIntHashFunction(unsigned int key)
42 {
43 key += ~(key > 10);
45 key +=(key > 6);
47 key += ~(key > 16);
49 return key;
50 }
51
52 /* Identity hash function for integer keys */
53 unsigned int dictIdentityHashFunction(unsigned int key)
54 {
55 return key;
56 }
57
58 /* Generic hash function (a popular one from Bernstein).
59* I tested a few and this was the best. */
60 unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
61 unsigned int hash = 5381;
62
63 while (len--)
64 hash = ((hash size = 0;
85 ht->sizemask = 0;
86 ht->used = 0;
87 }
88 //初始化一个新的哈希表结构,并且调用_dictInit对其进行初始化
89 /* Create a new hash table */
90 dict *dictCreate(dictType *type,
91 void *privDataPtr)
92 {
93 dict *d = zmalloc(sizeof(*d));
94
95 _dictInit(d,type,privDataPtr);
96 return d;
97 }
98
99 //初始化哈希表
100 /* Initialize the hash table */
101 int _dictInit(dict *d, dictType *type,
102 void *privDataPtr)
103 {
104 _dictReset(&d->ht);
105 _dictReset(&d->ht);
106 d->type = type;
107 d->privdata = privDataPtr;
108 d->rehashidx = -1;
109 d->iterators = 0;
110 return DICT_OK;
111 }
112
113 //resize哈希表d,如果entry数量小于默认初始值,将其置为初始值
114 //否则将其置为与保存的元素数量相同
115 /* Resize the table to the minimal size that contains all the elements,
116* but with the invariant of a USER/BUCKETS ratio near to ht.used;
123 if (minimal < DICT_HT_INITIAL_SIZE)
124 minimal = DICT_HT_INITIAL_SIZE;
125 return dictExpand(d, minimal);
126 }
127
128
129 //根据size,得到下一个hash的size,应该是2的幂次
130 //如果size的大小小于目前元素的数量,或者dict正在resize,则终止expanding
131 //如果确定可以resize,申请一个newsize大小的dicthashtable,并为其初始化
132 /* Expand or create the hashtable */
133 int dictExpand(dict *d, unsigned long size)
134 {
135 dictht n; /* the new hashtable */
136 unsigned long realsize = _dictNextPower(size);
137
138 /* the size is invalid if it is smaller than the number of
139 * elements already inside the hashtable */
140 if (dictIsRehashing(d) || d->ht.used > size)
141 return DICT_ERR;
142
143 /* Allocate the new hashtable and initialize all pointers to NULL */
144 n.size = realsize;
145 n.sizemask = realsize-1;
146 n.table = zcalloc(realsize*sizeof(dictEntry*));
147 n.used = 0;
148
149 /* Is this the first initialization? If so it's not really a rehashing
150 * we just set the first hash table so that it can accept keys. */
151 if (d->ht.table == NULL) {
152 d->ht = n;
153 return DICT_OK;
154 }
155
156 /* Prepare a second hash table for incremental rehashing */
157 d->ht = n;
158 d->rehashidx = 0;
159 return DICT_OK;
160 }
161
162
163
164 //rehashing 操作需要n步来执行,一次rehash一个元素,这样一点点的rehash
165 //可以避免性能波动
166 /* Performs N steps of incremental rehashing. Returns 1 if there are still
167* keys to move from the old to the new hash table, otherwise 0 is returned.
168* Note that a rehashing step consists in moving a bucket (that may have more
169* thank one key as we use chaining) from the old to the new hash table. */
170 int dictRehash(dict *d, int n) {
171 if (!dictIsRehashing(d)) return 0;
172
173 while(n--) {
174 dictEntry *de, *nextde;
175
176 /* Check if we already rehashed the whole table... */
177 if (d->ht.used == 0) {
178 zfree(d->ht.table);
179 d->ht = d->ht;
180 _dictReset(&d->ht);
181 d->rehashidx = -1;
182 return 0;
183 }
184
185 /* Note that rehashidx can't overflow as we are sure there are more
186 * elements because ht.used != 0 */
187 while(d->ht.table == NULL) d->rehashidx++;
188 de = d->ht.table;
189 /* Move all the keys in this bucket from the old to the new hash HT */
190 while(de) {
191 unsigned int h;
192
193 nextde = de->next;
194 /* Get the index in the new hash table */
195 h = dictHashKey(d, de->key) & d->ht.sizemask;
196 de->next = d->ht.table;
197 d->ht.table = de;
198 d->ht.used--;
199 d->ht.used++;
200 de = nextde;
201 }
202 d->ht.table = NULL;
203 d->rehashidx++;
204 }
205 return 1;
206 }
207
208 //得到以毫秒为单位的当前时间
209 long long timeInMilliseconds(void) {
210 struct timeval tv;
211
212 gettimeofday(&tv,NULL);
213 return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
214 }
215 //每次执行一定时间的rehashing操作,这次rehasing的时间不超过ms毫秒
216 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
217 int dictRehashMilliseconds(dict *d, int ms) {
218 long long start = timeInMilliseconds();
219 int rehashes = 0;
220
221 while(dictRehash(d,100)) {
222 rehashes += 100;
223 if (timeInMilliseconds()-start > ms) break;
224 }
225 return rehashes;
226 }
227
228
229 //这个函数执行一次rehashing,即移动一个元素。
230 //这个函数在任何一次查询或者更新操作时会被调用
231 //将rehashing的性能消耗分布在每一步
232 /* This function performs just a step of rehashing, and only if there are
233* no safe iterators bound to our hash table. When we have iterators in the
234* middle of a rehashing we can't mess with the two hash tables otherwise
235* some element can be missed or duplicated.
236*
237* This function is called by common lookup or update operations in the
238* dictionary so that the hash table automatically migrates from H1 to H2
239* while it is actively used. */
240 static void _dictRehashStep(dict *d) {
241 if (d->iterators == 0) dictRehash(d,1);
242 }
243
244 //在d中增加一个键值对
245 /* Add an element to the target hash table */
246 int dictAdd(dict *d, void *key, void *val)
247 {
248 int index;
249 dictEntry *entry;
250 dictht *ht;
251
252 if (dictIsRehashing(d)) _dictRehashStep(d);
253
254 /* Get the index of the new element, or -1 if
255 * the element already exists. */
256 if ((index = _dictKeyIndex(d, key)) == -1)
257 return DICT_ERR;
258
259 /* Allocates the memory and stores key */
260 ht = dictIsRehashing(d) ? &d->ht : &d->ht;
261 entry = zmalloc(sizeof(*entry));
262 entry->next = ht->table;
263 ht->table = entry;
264 ht->used++;
265
266 /* Set the hash entry fields. */
267 dictSetHashKey(d, entry, key);
268 dictSetHashVal(d, entry, val);
269 return DICT_OK;
270 }
271
272 //增加一个元素,如果存在,替换
273 /* Add an element, discarding the old if the key already exists.
274* Return 1 if the key was added from scratch, 0 if there was already an
275* element with such key and dictReplace() just performed a value update
276* operation. */
277 int dictReplace(dict *d, void *key, void *val)
278 {
279 dictEntry *entry, auxentry;
280
281 /* Try to add the element. If the key
282 * does not exists dictAdd will suceed. */
283 if (dictAdd(d, key, val) == DICT_OK)
284 return 1;
285 /* It already exists, get the entry */
286 entry = dictFind(d, key);
287 /* Free the old value and set the new one */
288 /* Set the new value and free the old one. Note that it is important
289 * to do that in this order, as the value may just be exactly the same
290 * as the previous one. In this context, think to reference counting,
291 * you want to increment (set), and then decrement (free), and not the
292 * reverse. */
293 auxentry = *entry;
294 dictSetHashVal(d, entry, val);
295 dictFreeEntryVal(d, &auxentry);
296 return 0;
297 }
298
299 //删除一个元素
300 /* Search and remove an element */
301 static int dictGenericDelete(dict *d, const void *key, int nofree)
302 {
303 unsigned int h, idx;
304 dictEntry *he, *prevHe;
305 int table;
306
307 if (d->ht.size == 0) return DICT_ERR; /* d->ht.table is NULL */
308 if (dictIsRehashing(d)) _dictRehashStep(d);
309 h = dictHashKey(d, key);
310
311 for (table = 0; table ht.sizemask;
313 he = d->ht.table;
314 prevHe = NULL;
315 while(he) {
316 if (dictCompareHashKeys(d, key, he->key)) {
317 /* Unlink the element from the list */
318 if (prevHe)
319 prevHe->next = he->next;
320 else
321 d->ht.table = he->next;
322 if (!nofree) {
323 dictFreeEntryKey(d, he);
324 dictFreeEntryVal(d, he);
325 }
326 zfree(he);
327 d->ht.used--;
328 return DICT_OK;
329 }
330 prevHe = he;
331 he = he->next;
332 }
333 if (!dictIsRehashing(d)) break;
334 }
335 return DICT_ERR; /* not found */
336 }
337
338 //删除ht中的一个元素
339 int dictDelete(dict *ht, const void *key) {
340 return dictGenericDelete(ht,key,0);
341 }
342
343 //删除一个袁术,不释放old键值对的空间
344 int dictDeleteNoFree(dict *ht, const void *key) {
345 return dictGenericDelete(ht,key,1);
346 }
347
348 //释放d中的dictht ht及其中所有的keyvalue对
349 /* Destroy an entire dictionary */
350 int _dictClear(dict *d, dictht *ht)
351 {
352 unsigned long i;
353
354 /* Free all the elements */
355 for (i = 0; i < ht->size && ht->used > 0; i++) {
356 dictEntry *he, *nextHe;
357
358 if ((he = ht->table) == NULL) continue;
359 while(he) {
360 nextHe = he->next;
361 dictFreeEntryKey(d, he);
362 dictFreeEntryVal(d, he);
363 zfree(he);
364 ht->used--;
365 he = nextHe;
366 }
367 }
368 /* Free the table and the allocated cache structure */
369 zfree(ht->table);
370 /* Re-initialize the table */
371 _dictReset(ht);
372 return DICT_OK; /* never fails */
373 }
374
375 //释放整个哈希表
376 /* Clear & Release the hash table */
377 void dictRelease(dict *d)
378 {
379 _dictClear(d,&d->ht);
380 _dictClear(d,&d->ht);
381 zfree(d);
382 }
383
384 //找到key所在的entry
385 dictEntry *dictFind(dict *d, const void *key)
386 {
387 dictEntry *he;
388 unsigned int h, idx, table;
389
390 if (d->ht.size == 0) return NULL; /* We don't have a table at all */
391 if (dictIsRehashing(d)) _dictRehashStep(d);
392 h = dictHashKey(d, key);
393 for (table = 0; table ht.sizemask;
395 he = d->ht.table;
396 while(he) {
397 if (dictCompareHashKeys(d, key, he->key))
398 return he;
399 he = he->next;
400 }
401 if (!dictIsRehashing(d)) return NULL;
402 }
403 return NULL;
404 }
405
406 //拿到key的value,如果不存在,返回NULL
407 void *dictFetchValue(dict *d, const void *key) {
408 dictEntry *he;
409
410 he = dictFind(d,key);
411 return he ? dictGetEntryVal(he) : NULL;
412 }
413
414 //拿到dict的iterator
415 dictIterator *dictGetIterator(dict *d)
416 {
417 dictIterator *iter = zmalloc(sizeof(*iter));
418
419 iter->d = d;
420 iter->table = 0;
421 iter->index = -1;
422 iter->safe = 0;
423 iter->entry = NULL;
424 iter->nextEntry = NULL;
425 return iter;
426 }
427
428 //得到safe的iterator
429 //如果iterator是safe的,则可以进行修改操作,否则,只能执行dictNext
430 dictIterator *dictGetSafeIterator(dict *d) {
431 dictIterator *i = dictGetIterator(d);
432
433 i->safe = 1;
434 return i;
435 }
436
437 //得到iter的下一个元素
438 dictEntry *dictNext(dictIterator *iter)
439 {
440 while (1) {
441 if (iter->entry == NULL) {
442 dictht *ht = &iter->d->ht;
443 if (iter->safe && iter->index == -1 && iter->table == 0)
444 iter->d->iterators++;
445 iter->index++;
446 if (iter->index >= (signed) ht->size) {
447 if (dictIsRehashing(iter->d) && iter->table == 0) {
448 iter->table++;
449 iter->index = 0;
450 ht = &iter->d->ht;
451 } else {
452 break;
453 }
454 }
455 iter->entry = ht->table;
456 } else {
457 iter->entry = iter->nextEntry;
458 }
459 if (iter->entry) {
460 /* We need to save the 'next' here, the iterator user
461 * may delete the entry we are returning. */
462 iter->nextEntry = iter->entry->next;
463 return iter->entry;
464 }
465 }
466 return NULL;
467 }
468
469 //释放哈希表的iterator
470 void dictReleaseIterator(dictIterator *iter)
471 {
472 if (iter->safe && !(iter->index == -1 && iter->table == 0))
473 iter->d->iterators--;
474 zfree(iter);
475 }
476
477 /* Return a random entry from the hash table. Useful to
478* implement randomized algorithms */
479//得到一个随机key
480 dictEntry *dictGetRandomKey(dict *d)
481 {
482 dictEntry *he, *orighe;
483 unsigned int h;
484 int listlen, listele;
485
486 if (dictSize(d) == 0) return NULL;
487 if (dictIsRehashing(d)) _dictRehashStep(d);
488 if (dictIsRehashing(d)) {
489 do {
490 h = random() % (d->ht.size+d->ht.size);
491 he = (h >= d->ht.size) ? d->ht.table.size] :
492 d->ht.table;
493 } while(he == NULL);
494 } else {
495 do {
496 h = random() & d->ht.sizemask;
497 he = d->ht.table;
498 } while(he == NULL);
499 }
500
501 /* Now we found a non empty bucket, but it is a linked
502 * list and we need to get a random element from the list.
503 * The only sane way to do so is counting the elements and
504 * select a random index. */
505 listlen = 0;
506 orighe = he;
507 while(he) {
508 he = he->next;
509 listlen++;
510 }
511 listele = random() % listlen;
512 he = orighe;
513 while(listele--) he = he->next;
514 return he;
515 }
516
517 /* ------------------------- private functions ------------------------------ */
518
519 /* Expand the hash table if needed */
520 //如果哈希表需要resize,则执行dictexpand
521 static int _dictExpandIfNeeded(dict *d)
522 {
523 /* Incremental rehashing already in progress. Return. */
524 if (dictIsRehashing(d)) return DICT_OK;
525
526 /* If the hash table is empty expand it to the intial size. */
527 if (d->ht.size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
528
529 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
530 * table (global setting) or we should avoid it but the ratio between
531 * elements/buckets is over the "safe" threshold, we resize doubling
532 * the number of buckets. */
533 if (d->ht.used >= d->ht.size &&
534 (dict_can_resize ||
535 d->ht.used/d->ht.size > dict_force_resize_ratio))
536 {
537 return dictExpand(d, ((d->ht.size > d->ht.used) ?
538 d->ht.size : d->ht.used)*2);
539 }
540 return DICT_OK;
541 }
542
543 //根据size,得到比size大的最小的一个2的幂次数作为新哈希表的size值
544 /* Our hash table capability is a power of two */
545 static unsigned long _dictNextPower(unsigned long size)
546 {
547 unsigned long i = DICT_HT_INITIAL_SIZE;
548
549 if (size >= LONG_MAX) return LONG_MAX;
550 while(1) {
551 if (i >= size)
552 return i;
553 i *= 2;
554 }
555 }
556
557
558 //返回key在d中所在的index值,如果已经存在,则返回-1,否则返回所在entry的index值
559 /* Returns the index of a free slot that can be populated with
560* an hash entry for the given 'key'.
561* If the key already exists, -1 is returned.
562*
563* Note that if we are in the process of rehashing the hash table, the
564* index is always returned in the context of the second (new) hash table. */
565 static int _dictKeyIndex(dict *d, const void *key)
566 {
567 unsigned int h, idx, table;
568 dictEntry *he;
569
570 /* Expand the hashtable if needed */
571 if (_dictExpandIfNeeded(d) == DICT_ERR)
572 return -1;
573 /* Compute the key hash value */
574 h = dictHashKey(d, key);
575 for (table = 0; table ht.sizemask;
577 /* Search if this slot does not already contain the given key */
578 he = d->ht.table;
579 while(he) {
580 if (dictCompareHashKeys(d, key, he->key))
581 return -1;
582 he = he->next;
583 }
584 if (!dictIsRehashing(d)) break;
585 }
586 return idx;
587 }
588
589 //清空哈希表d
590 void dictEmpty(dict *d) {
591 _dictClear(d,&d->ht);
592 _dictClear(d,&d->ht);
593 d->rehashidx = -1;
594 d->iterators = 0;
595 }
596
597 #define DICT_STATS_VECTLEN 50
598 static void _dictPrintStatsHt(dictht *ht) {
599 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
600 unsigned long totchainlen = 0;
601 unsigned long clvector;
602
603 if (ht->used == 0) {
604 printf("No stats available for empty dictionaries\n");
605 return;
606 }
607
608 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector = 0;
609 for (i = 0; i < ht->size; i++) {
610 dictEntry *he;
611
612 if (ht->table == NULL) {
613 clvector++;
614 continue;
615 }
616 slots++;
617 /* For each hash entry on this slot... */
618 chainlen = 0;
619 he = ht->table;
620 while(he) {
621 chainlen++;
622 he = he->next;
623 }
624 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
625 if (chainlen > maxchainlen) maxchainlen = chainlen;
626 totchainlen += chainlen;
627 }
628 printf("Hash table stats:\n");
629 printf(" table size: %ld\n", ht->size);
630 printf(" number of elements: %ld\n", ht->used);
631 printf(" different slots: %ld\n", slots);
632 printf(" max chain length: %ld\n", maxchainlen);
633 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
634 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
635 printf(" Chain length distribution:\n");
636 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
637 if (clvector == 0) continue;
638 printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector, ((float)clvector/ht->size)*100);
639 }
640 }
641
642 void dictPrintStats(dict *d) {
643 _dictPrintStatsHt(&d->ht);
644 if (dictIsRehashing(d)) {
645 printf("-- Rehashing into ht:\n");
646 _dictPrintStatsHt(&d->ht);
647 }
648 }
649
650 //打开rehashing的开关,允许条件满足时执行hashExpanding
651 void dictEnableResize(void) {
652 dict_can_resize = 1;
653 }
654
655 void dictDisableResize(void) {
656 dict_can_resize = 0;
657 }
658
659 #if 0
660
661 /* The following are just example hash table types implementations.
662* Not useful for Redis so they are commented out.
663*/
664
665 /* ----------------------- StringCopy Hash Table Type ------------------------*/
666
667 static unsigned int _dictStringCopyHTHashFunction(const void *key)
668 {
669 return dictGenHashFunction(key, strlen(key));
670 }
671
672 static void *_dictStringDup(void *privdata, const void *key)
673 {
674 int len = strlen(key);
675 char *copy = zmalloc(len+1);
676 DICT_NOTUSED(privdata);
677
678 memcpy(copy, key, len);
679 copy = '\0';
680 return copy;
681 }
682
683 static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
684 const void *key2)
685 {
686 DICT_NOTUSED(privdata);
687
688 return strcmp(key1, key2) == 0;
689 }
690
691 static void _dictStringDestructor(void *privdata, void *key)
692 {
693 DICT_NOTUSED(privdata);
694
695 zfree(key);
696 }
697
698 dictType dictTypeHeapStringCopyKey = {
699 _dictStringCopyHTHashFunction, /* hash function */
700 _dictStringDup, /* key dup */
701 NULL, /* val dup */
702 _dictStringCopyHTKeyCompare, /* key compare */
703 _dictStringDestructor, /* key destructor */
704 NULL /* val destructor */
705 };
706
707 /* This is like StringCopy but does not auto-duplicate the key.
708* It's used for intepreter's shared strings. */
709 dictType dictTypeHeapStrings = {
710 _dictStringCopyHTHashFunction, /* hash function */
711 NULL, /* key dup */
712 NULL, /* val dup */
713 _dictStringCopyHTKeyCompare, /* key compare */
714 _dictStringDestructor, /* key destructor */
715 NULL /* val destructor */
716 };
717
718 /* This is like StringCopy but also automatically handle dynamic
719* allocated C strings as values. */
720 dictType dictTypeHeapStringCopyKeyValue = {
721 _dictStringCopyHTHashFunction, /* hash function */
722 _dictStringDup, /* key dup */
723 _dictStringDup, /* val dup */
724 _dictStringCopyHTKeyCompare, /* key compare */
725 _dictStringDestructor, /* key destructor */
726 _dictStringDestructor, /* val destructor */
727 };
728 #endif
页:
[1]