设为首页 收藏本站
查看: 1128|回复: 0

[经验分享] Redis源码分析(三)---dict哈希结构

[复制链接]
累计签到:1 天
连续签到:1 天
发表于 2014-10-11 08:36:52 | 显示全部楼层 |阅读模式
    昨天分析完adlist的Redis代码,今天马上马不停蹄的继续学习Redis代码中的哈希部分的结构学习,不过在这里他不叫什么hashMap,而是叫dict,而且是一种全新设计的一种哈希结构,他只是通过几个简单的结构体,再搭配上一些比较常见的哈希算法,就实现了类似高级语言中HashMap的作用了。也让我见识了一些哈希算法的实现,比如dbj hash的算法实现,俗称times33,算法,就是不停的*33,。这种算是一种超级简单的哈希算法。

         下面说说给我感觉Redis代码中哈希实现的不是那么简单,中间加了一些东西,比如说dictType定义了一些字典集合操作的公共方法,我把dict叫做字典总类,也可以说字典操作类,真正存放键值对的叫dictEntry,我叫做字典集合,字典集合存放在哈希表中,叫dictht,下面给出一张结构图来理理思路。
SouthEast.jpg


        下面给出2个文件的代码解析:

dict.h:



    <span style="font-size:14px;">/* Hash Tables Implementation.
     *
     * This file implements in-memory hash tables with insert/del/replace/find/
     * get-random-element operations. Hash tables will auto-resize if needed
     * tables of power of two in size are used, collisions are handled by
     * chaining. See the source code for more information... :)
     *
     * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions are met:
     *
     *   * Redistributions of source code must retain the above copyright notice,
     *     this list of conditions and the following disclaimer.
     *   * Redistributions in binary form must reproduce the above copyright
     *     notice, this list of conditions and the following disclaimer in the
     *     documentation and/or other materials provided with the distribution.
     *   * Neither the name of Redis nor the names of its contributors may be used
     *     to endorse or promote products derived from this software without
     *     specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     * POSSIBILITY OF SUCH DAMAGE.
     */  
      
    #include <stdint.h>  
      
    #ifndef __DICT_H  
    #define __DICT_H  
      
    /* 定义了成功与错误的值 */  
    #define DICT_OK 0  
    #define DICT_ERR 1  
      
    /* Unused arguments generate annoying warnings... */  
    /* dict没有用到时,用来提示警告的 */  
    #define DICT_NOTUSED(V) ((void) V)  
      
    /* 字典结构体,保存K-V值的结构体 */  
    typedef struct dictEntry {  
        //字典key函数指针  
        void *key;  
        union {  
            void *val;  
            //无符号整型值  
            uint64_t u64;  
            //有符号整型值  
            int64_t s64;  
            double d;  
        } v;  
        //下一字典结点  
        struct dictEntry *next;  
    } dictEntry;  
      
    /* 字典类型 */  
    typedef struct dictType {  
        //哈希计算方法,返回整形变量  
        unsigned int (*hashFunction)(const void *key);  
        //复制key方法  
        void *(*keyDup)(void *privdata, const void *key);  
        //复制val方法  
        void *(*valDup)(void *privdata, const void *obj);  
        //key值比较方法  
        int (*keyCompare)(void *privdata, const void *key1, const void *key2);  
        //key的析构函数  
        void (*keyDestructor)(void *privdata, void *key);  
        //val的析构函数  
        void (*valDestructor)(void *privdata, void *obj);  
    } dictType;  
      
    /* This is our hash table structure. Every dictionary has two of this as we
     * implement incremental rehashing, for the old to the new table. */  
    /* 哈希表结构体 */  
    typedef struct dictht {  
        //字典实体  
        dictEntry **table;  
        //表格可容纳字典数量  
        unsigned long size;  
        unsigned long sizemask;  
        //正在被使用的数量  
        unsigned long used;  
    } dictht;  
      
    /* 字典主操作类 */  
    typedef struct dict {  
        //字典类型  
        dictType *type;  
        //私有数据指针  
        void *privdata;  
        //字典哈希表,共2张,一张旧的,一张新的  
        dictht ht[2];  
        //重定位哈希时的下标  
        long rehashidx; /* rehashing not in progress if rehashidx == -1 */  
        //当前迭代器数量  
        int iterators; /* number of iterators currently running */  
    } dict;  
      
    /* If safe is set to 1 this is a safe iterator, that means, you can call
     * dictAdd, dictFind, and other functions against the dictionary even while
     * iterating. Otherwise it is a non safe iterator, and only dictNext()
     * should be called while iterating. */  
    /* 字典迭代器,如果是安全迭代器,这safe设置为1,可以调用dicAdd,dictFind */  
    /* 如果是不安全的,则只能调用dicNext方法*/  
    typedef struct dictIterator {  
        //当前字典  
        dict *d;  
        //下标  
        long index;  
        //表格,和安全值的表格代表的是旧的表格,还是新的表格  
        int table, safe;  
        //字典实体  
        dictEntry *entry, *nextEntry;  
        /* unsafe iterator fingerprint for misuse detection. */  
        /* 指纹标记,避免不安全的迭代器滥用现象 */  
        long long fingerprint;  
    } dictIterator;  
      
    /* 字典扫描方法 */  
    typedef void (dictScanFunction)(void *privdata, const dictEntry *de);  
      
    /* This is the initial size of every hash table */  
    /* 初始化哈希表的数目 */  
    #define DICT_HT_INITIAL_SIZE     4  
      
    /* ------------------------------- Macros ------------------------------------*/  
    /* 字典释放val函数时候调用,如果dict中的dictType定义了这个函数指针, */  
    #define dictFreeVal(d, entry) \  
        if ((d)->type->valDestructor) \  
            (d)->type->valDestructor((d)->privdata, (entry)->v.val)  
         
    /* 字典val函数复制时候调用,如果dict中的dictType定义了这个函数指针, */  
    #define dictSetVal(d, entry, _val_) do { \  
        if ((d)->type->valDup) \  
            entry->v.val = (d)->type->valDup((d)->privdata, _val_); \  
        else \  
            entry->v.val = (_val_); \  
    } while(0)  
      
    /* 设置dictEntry中共用体v中有符号类型的值 */  
    #define dictSetSignedIntegerVal(entry, _val_) \  
        do { entry->v.s64 = _val_; } while(0)  
      
    /* 设置dictEntry中共用体v中无符号类型的值 */  
    #define dictSetUnsignedIntegerVal(entry, _val_) \  
        do { entry->v.u64 = _val_; } while(0)  
      
    /* 设置dictEntry中共用体v中double类型的值 */  
    #define dictSetDoubleVal(entry, _val_) \  
        do { entry->v.d = _val_; } while(0)  
      
    /* 调用dictType定义的key析构函数 */  
    #define dictFreeKey(d, entry) \  
        if ((d)->type->keyDestructor) \  
            (d)->type->keyDestructor((d)->privdata, (entry)->key)  
      
    /* 调用dictType定义的key复制函数,没有定义直接赋值 */  
    #define dictSetKey(d, entry, _key_) do { \  
        if ((d)->type->keyDup) \  
            entry->key = (d)->type->keyDup((d)->privdata, _key_); \  
        else \  
            entry->key = (_key_); \  
    } while(0)  
      
    /* 调用dictType定义的key比较函数,没有定义直接key值直接比较 */  
    #define dictCompareKeys(d, key1, key2) \  
        (((d)->type->keyCompare) ? \  
            (d)->type->keyCompare((d)->privdata, key1, key2) : \  
            (key1) == (key2))  
      
    #define dictHashKey(d, key) (d)->type->hashFunction(key)   //哈希定位方法  
    #define dictGetKey(he) ((he)->key)    //获取dictEntry的key值  
    #define dictGetVal(he) ((he)->v.val)  //获取dicEntry中共用体v中定义的val值  
    #define dictGetSignedIntegerVal(he) ((he)->v.s64) //获取dicEntry中共用体v中定义的有符号值  
    #define dictGetUnsignedIntegerVal(he) ((he)->v.u64)  //获取dicEntry中共用体v中定义的无符号值  
    #define dictGetDoubleVal(he) ((he)->v.d)  //获取dicEntry中共用体v中定义的double类型值  
    #define dictSlots(d) ((d)->ht[0].size+(d)->ht[1].size)  //获取dict字典中总的表大小  
    #define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used)   //获取dict字典中总的表的总正在被使用的数量  
    #define dictIsRehashing(d) ((d)->rehashidx != -1)   //字典有无被重定位过  
      
    /* API */  
    dict *dictCreate(dictType *type, void *privDataPtr);   //创建dict字典总类  
    int dictExpand(dict *d, unsigned long size);    //字典扩增方法  
    int dictAdd(dict *d, void *key, void *val);    //字典根据key, val添加一个字典集  
    dictEntry *dictAddRaw(dict *d, void *key);     //字典添加一个只有key值的dicEntry  
    int dictReplace(dict *d, void *key, void *val); //替代dict中一个字典集  
    dictEntry *dictReplaceRaw(dict *d, void *key);  //替代dict中的一个字典,只提供一个key值  
    int dictDelete(dict *d, const void *key);    //根据key删除一个字典集  
    int dictDeleteNoFree(dict *d, const void *key);  //字典集删除无、不调用free方法  
    void dictRelease(dict *d);   //释放整个dict  
    dictEntry * dictFind(dict *d, const void *key);  //根据key寻找字典集  
    void *dictFetchValue(dict *d, const void *key);  //根据key值寻找相应的val值  
    int dictResize(dict *d);  //重新计算大小  
    dictIterator *dictGetIterator(dict *d); //获取字典迭代器  
    dictIterator *dictGetSafeIterator(dict *d);  //获取字典安全迭代器   
    dictEntry *dictNext(dictIterator *iter);   //根据字典迭代器获取字典集的下一字典集  
    void dictReleaseIterator(dictIterator *iter); //释放迭代器  
    dictEntry *dictGetRandomKey(dict *d);  //随机获取一个字典集  
    void dictPrintStats(dict *d);  //打印当前字典状态  
    unsigned int dictGenHashFunction(const void *key, int len); //输入的key值,目标长度,此方法帮你计算出索引值  
    unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len); //这里提供了一种比较简单的哈希算法  
    void dictEmpty(dict *d, void(callback)(void*)); //清空字典  
    void dictEnableResize(void);  //启用调整方法  
    void dictDisableResize(void); //禁用调整方法  
    int dictRehash(dict *d, int n); //hash重定位,主要从旧的表映射到新表中,分n轮定位  
    int dictRehashMilliseconds(dict *d, int ms);  //在给定时间内,循环执行哈希重定位  
    void dictSetHashFunctionSeed(unsigned int initval); //设置哈希方法种子  
    unsigned int dictGetHashFunctionSeed(void);  //获取哈希种子  
    unsigned long dictScan(dict *d, unsigned long v, dictScanFunction *fn, void *privdata); //字典扫描方法  
      
    /* Hash table types */  
    /* 哈希表类型  */  
    extern dictType dictTypeHeapStringCopyKey;  
    extern dictType dictTypeHeapStrings;  
    extern dictType dictTypeHeapStringCopyKeyValue;  
      
    #endif /* __DICT_H */  
    </span>  


dict.c;



    <span style="font-size:14px;">/* Hash Tables Implementation.
     *
     * This file implements in memory hash tables with insert/del/replace/find/
     * get-random-element operations. Hash tables will auto resize if needed
     * tables of power of two in size are used, collisions are handled by
     * chaining. See the source code for more information... :)
     *
     * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions are met:
     *
     *   * Redistributions of source code must retain the above copyright notice,
     *     this list of conditions and the following disclaimer.
     *   * Redistributions in binary form must reproduce the above copyright
     *     notice, this list of conditions and the following disclaimer in the
     *     documentation and/or other materials provided with the distribution.
     *   * Neither the name of Redis nor the names of its contributors may be used
     *     to endorse or promote products derived from this software without
     *     specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     * POSSIBILITY OF SUCH DAMAGE.
     */  
      
    #include "fmacros.h"  
      
    #include <stdio.h>  
    #include <stdlib.h>  
    #include <string.h>  
    #include <stdarg.h>  
    #include <limits.h>  
    #include <sys/time.h>  
    #include <ctype.h>  
      
    #include "dict.h"  
    #include "zmalloc.h"  
    #include "redisassert.h"  
      
    /* Using dictEnableResize() / dictDisableResize() we make possible to
     * enable/disable resizing of the hash table as needed. This is very important
     * for Redis, as we use copy-on-write and don't want to move too much memory
     * around when there is a child performing saving operations.
     *
     * Note that even when dict_can_resize is set to 0, not all resizes are
     * prevented: a hash table is still allowed to grow if the ratio between
     * the number of elements and the buckets > dict_force_resize_ratio. */  
    /* redis用了dictEnableResize() / dictDisableResize()方法可以重新调整哈希表的长度,
     *因为redis采用的是写时复制的算法,不会挪动太多的内存,只有当调整数量大于一定比例才可能有效 */  
    static int dict_can_resize = 1;  
    static unsigned int dict_force_resize_ratio = 5;  
      
    /* -------------------------- private prototypes ---------------------------- */  
    /* 私有方法 */  
    static int _dictExpandIfNeeded(dict *ht);    //字典是否需要扩展  
    static unsigned long _dictNextPower(unsigned long size);  
    static int _dictKeyIndex(dict *ht, const void *key);  
    static int _dictInit(dict *ht, dictType *type, void *privDataPtr);  //字典初始化方法  
      
    /* -------------------------- hash functions -------------------------------- */  
    /* 哈希索引计算的方法 */  
      
    /* Thomas Wang's 32 bit Mix Function */  
    /* Thomas Wang's 32 bit Mix 的哈希算法直接输入key值,获取索引值,据说这种冲突的概率很低 */  
    unsigned int dictIntHashFunction(unsigned int key)  
    {  
        key += ~(key << 15);  
        key ^=  (key >> 10);  
        key +=  (key << 3);  
        key ^=  (key >> 6);  
        key += ~(key << 11);  
        key ^=  (key >> 16);  
        return key;  
    }  
      
    //哈希方法种子,跟产生随机数的种子作用应该是一样的  
    static uint32_t dict_hash_function_seed = 5381;  
      
    /* 重设哈希种子 */  
    void dictSetHashFunctionSeed(uint32_t seed) {  
        dict_hash_function_seed = seed;  
    }  
      
    /* 获取哈希种子 */  
    uint32_t dictGetHashFunctionSeed(void) {  
        return dict_hash_function_seed;  
    }  
      
    /* MurmurHash2, by Austin Appleby
     * Note - This code makes a few assumptions about how your machine behaves -
     * 1. We can read a 4-byte value from any address without crashing
     * 2. sizeof(int) == 4
     *
     * And it has a few limitations -
     *
     * 1. It will not work incrementally.
     * 2. It will not produce the same results on little-endian and big-endian
     *    machines.
     */  
    /* 输入的key值,目标长度,此方法帮你计算出索引值,此方法特别表明,
     *  不会因为机器之间高低位存储的不同而产生相同的结果 */  
    unsigned int dictGenHashFunction(const void *key, int len) {  
        /* 'm' and 'r' are mixing constants generated offline.
         They're not really 'magic', they just happen to work well.  */  
        //seed种子,m,r的值都将会参与到计算中  
        uint32_t seed = dict_hash_function_seed;  
        const uint32_t m = 0x5bd1e995;  
        const int r = 24;  
      
        /* Initialize the hash to a 'random' value */  
        uint32_t h = seed ^ len;  
      
        /* Mix 4 bytes at a time into the hash */  
        const unsigned char *data = (const unsigned char *)key;  
      
        while(len >= 4) {  
            uint32_t k = *(uint32_t*)data;  
      
            k *= m;  
            k ^= k >> r;  
            k *= m;  
      
            h *= m;  
            h ^= k;  
      
            data += 4;  
            len -= 4;  
        }  
      
        /* Handle the last few bytes of the input array  */  
        switch(len) {  
        case 3: h ^= data[2] << 16;  
        case 2: h ^= data[1] << 8;  
        case 1: h ^= data[0]; h *= m;  
        };  
      
        /* Do a few final mixes of the hash to ensure the last few
         * bytes are well-incorporated. */  
        h ^= h >> 13;  
        h *= m;  
        h ^= h >> 15;  
      
        return (unsigned int)h;  
    }  
      
    /* And a case insensitive hash function (based on djb hash) */  
    /* 这里提供了一种比较简单的哈希算法 */  
    unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {  
        //以djb hash为基础,俗称“times33”就是不断的乘33  
        //几乎所有的流行的hash map都采用了DJB hash function  
        unsigned int hash = (unsigned int)dict_hash_function_seed;  
      
        while (len--)  
            hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */  
        return hash;  
    }  
      
    /* ----------------------------- API implementation ------------------------- */  
      
    /* Reset a hash table already initialized with ht_init().
     * NOTE: This function should only be called by ht_destroy(). */  
    /* 重置哈希表方法,只在ht_destroy时使用 */  
    static void _dictReset(dictht *ht)  
    {  
        //清空相应的变量,ht->table的类型其实是dictEntry,叫table名字太有歧义了  
        ht->table = NULL;  
        ht->size = 0;  
        ht->sizemask = 0;  
        ht->used = 0;  
    }  
      
    /* Create a new hash table */  
    /* 创建dict操作类 */  
    dict *dictCreate(dictType *type,  
            void *privDataPtr)  
    {  
        dict *d = zmalloc(sizeof(*d));  
         
        //创建好空间之后调用初始化方法  
        _dictInit(d,type,privDataPtr);  
        return d;  
    }  
      
    /* Initialize the hash table */  
    /* 初始化dict类中的type,ht等变量 */  
    int _dictInit(dict *d, dictType *type,  
            void *privDataPtr)  
    {  
        //重置2个ht哈希表  
        _dictReset(&d->ht[0]);  
        _dictReset(&d->ht[1]);  
        //赋值dictType  
        d->type = type;  
        d->privdata = privDataPtr;  
        //-1代表还没有rehash过,  
        d->rehashidx = -1;  
        //当前使用中的迭代器为0  
        d->iterators = 0;  
         
        //返回DICT_OK,代表初始化成功  
        return DICT_OK;  
    }  
      
    /* Resize the table to the minimal size that contains all the elements,
     * but with the invariant of a USED/BUCKETS ratio near to <= 1 */  
    /* 调整哈希表,用最少的值容纳所有的字典集合 */  
    int dictResize(dict *d)  
    {  
        int minimal;  
      
        //如果系统默认调整值不大于0或已经调rehash过的就提示出错,拒绝操作  
        if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;  
         
        //最少数等于哈希标准鸿正在使用的数  
        minimal = d->ht[0].used;  
        if (minimal < DICT_HT_INITIAL_SIZE)  
            minimal = DICT_HT_INITIAL_SIZE;  
         
        //调用expand扩容  
        return dictExpand(d, minimal);  
    }  
      
    /* Expand or create the hash table */  
    /* 哈希表扩增方法 */  
    int dictExpand(dict *d, unsigned long size)  
    {  
        dictht n; /* the new hash table */  
        //获取调整值,以2的幂次向上取  
        unsigned long realsize = _dictNextPower(size);  
      
        /* the size is invalid if it is smaller than the number of
         * elements already inside the hash table */  
         //再次判断数量符合不符合  
        if (dictIsRehashing(d) || d->ht[0].used > size)  
            return DICT_ERR;  
      
        /* Allocate the new hash table and initialize all pointers to NULL */  
        //初始化大小  
        n.size = realsize;  
        n.sizemask = realsize-1;  
        //为表格申请realsize个字典集的大小  
        n.table = zcalloc(realsize*sizeof(dictEntry*));  
        n.used = 0;  
      
        /* Is this the first initialization? If so it's not really a rehashing
         * we just set the first hash table so that it can accept keys. */  
        if (d->ht[0].table == NULL) {  
            d->ht[0] = n;  
            return DICT_OK;  
        }  
      
        /* Prepare a second hash table for incremental rehashing */  
        //赋值给第二张表格  
        d->ht[1] = n;  
        d->rehashidx = 0;  
        return DICT_OK;  
    }  
      
    /* Performs N steps of incremental rehashing. Returns 1 if there are still
     * keys to move from the old to the new hash table, otherwise 0 is returned.
     * Note that a rehashing step consists in moving a bucket (that may have more
     * than one key as we use chaining) from the old to the new hash table. */  
    /* hash重定位,主要从旧的表映射到新表中
     * 如果返回1说明旧的表中还存在key迁移到新表中,0代表没有 */  
    int dictRehash(dict *d, int n) {  
        if (!dictIsRehashing(d)) return 0;  
         
        /* 根据参数分n步多次循环操作 */  
        while(n--) {  
            dictEntry *de, *nextde;  
      
            /* Check if we already rehashed the whole table... */  
            if (d->ht[0].used == 0) {  
                zfree(d->ht[0].table);  
                d->ht[0] = d->ht[1];  
                _dictReset(&d->ht[1]);  
                d->rehashidx = -1;  
                return 0;  
            }  
      
            /* Note that rehashidx can't overflow as we are sure there are more
             * elements because ht[0].used != 0 */  
            assert(d->ht[0].size > (unsigned long)d->rehashidx);  
            while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;  
            de = d->ht[0].table[d->rehashidx];  
            /* Move all the keys in this bucket from the old to the new hash HT */  
            /* 移动的关键操作 */  
            while(de) {  
                unsigned int h;  
      
                nextde = de->next;  
                /* Get the index in the new hash table */  
                h = dictHashKey(d, de->key) & d->ht[1].sizemask;  
                de->next = d->ht[1].table[h];  
                d->ht[1].table[h] = de;  
                d->ht[0].used--;  
                d->ht[1].used++;  
                de = nextde;  
            }  
            d->ht[0].table[d->rehashidx] = NULL;  
            d->rehashidx++;  
        }  
        return 1;  
    }  
      
    /* 获取当前毫秒的时间 */  
    long long timeInMilliseconds(void) {  
        struct timeval tv;  
      
        gettimeofday(&tv,NULL);  
        return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);  
    }  
      
    /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */  
    /* 在给定时间内,循环执行哈希重定位 */  
    int dictRehashMilliseconds(dict *d, int ms) {  
        long long start = timeInMilliseconds();  
        int rehashes = 0;  
      
        while(dictRehash(d,100)) {  
            //重定位的次数累加  
            rehashes += 100;  
            //时间超出给定时间范围,则终止  
            if (timeInMilliseconds()-start > ms) break;  
        }  
        return rehashes;  
    }  
      
    /* This function performs just a step of rehashing, and only if there are
     * no safe iterators bound to our hash table. When we have iterators in the
     * middle of a rehashing we can't mess with the two hash tables otherwise
     * some element can be missed or duplicated.
     *
     * This function is called by common lookup or update operations in the
     * dictionary so that the hash table automatically migrates from H1 to H2
     * while it is actively used. */  
    /* 当没有迭代器时候,进行重定位算法 */  
    static void _dictRehashStep(dict *d) {  
        if (d->iterators == 0) dictRehash(d,1);  
    }  
      
    /* Add an element to the target hash table */  
    /* 添加一个dicEntry */  
    int dictAdd(dict *d, void *key, void *val)  
    {  
        dictEntry *entry = dictAddRaw(d,key);  
      
        if (!entry) return DICT_ERR;  
        dictSetVal(d, entry, val);  
        return DICT_OK;  
    }  
      
    /* Low level add. This function adds the entry but instead of setting
     * a value returns the dictEntry structure to the user, that will make
     * sure to fill the value field as he wishes.
     *
     * This function is also directly exposed to user API to be called
     * mainly in order to store non-pointers inside the hash value, example:
     *
     * entry = dictAddRaw(dict,mykey);
     * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
     *
     * Return values:
     *
     * If key already exists NULL is returned.
     * If key was added, the hash entry is returned to be manipulated by the caller.
     */  
    /* 添加一个指定key值的Entry */  
    dictEntry *dictAddRaw(dict *d, void *key)  
    {  
        int index;  
        dictEntry *entry;  
        dictht *ht;  
      
        if (dictIsRehashing(d)) _dictRehashStep(d);  
      
        /* Get the index of the new element, or -1 if
         * the element already exists. */  
        /* 如果指定的key已经存在,则直接返回NULL说明添加失败 */  
        if ((index = _dictKeyIndex(d, key)) == -1)  
            return NULL;  
      
        /* Allocate the memory and store the new entry */  
        ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];  
        entry = zmalloc(sizeof(*entry));  
        entry->next = ht->table[index];  
        ht->table[index] = entry;  
        ht->used++;  
      
        /* Set the hash entry fields. */  
        dictSetKey(d, entry, key);  
        return entry;  
    }  
      
    /* Add an element, discarding the old if the key already exists.
     * Return 1 if the key was added from scratch, 0 if there was already an
     * element with such key and dictReplace() just performed a value update
     * operation. */  
    /* 替换一个子字典集,如果不存在直接添加,存在,覆盖val的值 */  
    int dictReplace(dict *d, void *key, void *val)  
    {  
        dictEntry *entry, auxentry;  
      
        /* Try to add the element. If the key
         * does not exists dictAdd will suceed. */  
        //不存在,这个key直接添加  
        if (dictAdd(d, key, val) == DICT_OK)  
            return 1;  
        /* It already exists, get the entry */  
        entry = dictFind(d, key);  
        /* Set the new value and free the old one. Note that it is important
         * to do that in this order, as the value may just be exactly the same
         * as the previous one. In this context, think to reference counting,
         * you want to increment (set), and then decrement (free), and not the
         * reverse. */  
        //赋值方法  
        auxentry = *entry;  
        dictSetVal(d, entry, val);  
        dictFreeVal(d, &auxentry);  
        return 0;  
    }  
      
    /* dictReplaceRaw() is simply a version of dictAddRaw() that always
     * returns the hash entry of the specified key, even if the key already
     * exists and can't be added (in that case the entry of the already
     * existing key is returned.)
     *
     * See dictAddRaw() for more information. */  
    /* 添加字典,没有函数方法,如果存在,就不添加 */  
    dictEntry *dictReplaceRaw(dict *d, void *key) {  
        dictEntry *entry = dictFind(d,key);  
      
        return entry ? entry : dictAddRaw(d,key);  
    }  
      
    /* Search and remove an element */  
    /* 删除给定key的结点,可控制是否调用释放方法 */  
    static int dictGenericDelete(dict *d, const void *key, int nofree)  
    {  
        unsigned int h, idx;  
        dictEntry *he, *prevHe;  
        int table;  
      
        if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */  
        if (dictIsRehashing(d)) _dictRehashStep(d);  
        //计算key对应的哈希索引  
        h = dictHashKey(d, key);  
      
        for (table = 0; table <= 1; table++) {  
            idx = h & d->ht[table].sizemask;  
            //找到具体的索引对应的结点  
            he = d->ht[table].table[idx];  
            prevHe = NULL;  
            while(he) {  
                if (dictCompareKeys(d, key, he->key)) {  
                    /* Unlink the element from the list */  
                    if (prevHe)  
                        prevHe->next = he->next;  
                    else  
                        d->ht[table].table[idx] = he->next;  
                    if (!nofree) {  
                        //判断是否需要调用dict定义的free方法  
                        dictFreeKey(d, he);  
                        dictFreeVal(d, he);  
                    }  
                    zfree(he);  
                    d->ht[table].used--;  
                    return DICT_OK;  
                }  
                prevHe = he;  
                he = he->next;  
            }  
            if (!dictIsRehashing(d)) break;  
        }  
        return DICT_ERR; /* not found */  
    }  
      
    /* 会调用free方法的删除方法 */  
    int dictDelete(dict *ht, const void *key) {  
        return dictGenericDelete(ht,key,0);  
    }  
      
    /* 不会调用free方法的删除方法 */  
    int dictDeleteNoFree(dict *ht, const void *key) {  
        return dictGenericDelete(ht,key,1);  
    }  
      
    /* Destroy an entire dictionary */  
    /* 清空整个哈希表 */  
    int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {  
        unsigned long i;  
      
        /* Free all the elements */  
        for (i = 0; i < ht->size && ht->used > 0; i++) {  
            dictEntry *he, *nextHe;  
      
            //每次情况会调用回调方法  
            if (callback && (i & 65535) == 0) callback(d->privdata);  
      
            if ((he = ht->table) == NULL) continue;  
            while(he) {  
                //依次释放结点  
                nextHe = he->next;  
                dictFreeKey(d, he);  
                dictFreeVal(d, he);  
                zfree(he);  
                ht->used--;  
                he = nextHe;  
            }  
        }  
        /* Free the table and the allocated cache structure */  
        zfree(ht->table);  
        /* Re-initialize the table */  
        _dictReset(ht);  
        return DICT_OK; /* never fails */  
    }  
      
    /* Clear & Release the hash table */  
    /* 重置字典总类,清空2张表 */  
    void dictRelease(dict *d)  
    {  
        _dictClear(d,&d->ht[0],NULL);  
        _dictClear(d,&d->ht[1],NULL);  
        zfree(d);  
    }  
      
    /* 根据key返回具体的字典集 */  
    dictEntry *dictFind(dict *d, const void *key)  
    {  
        dictEntry *he;  
        unsigned int h, idx, table;  
      
        if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */  
        if (dictIsRehashing(d)) _dictRehashStep(d);  
        h = dictHashKey(d, key);  
        for (table = 0; table <= 1; table++) {  
            idx = h & d->ht[table].sizemask;  
            he = d->ht[table].table[idx];  
            while(he) {  
                if (dictCompareKeys(d, key, he->key))  
                    return he;  
                he = he->next;  
            }  
            if (!dictIsRehashing(d)) return NULL;  
        }  
        return NULL;  
    }  
      
    /* 获取目标字典集的方法 */  
    void *dictFetchValue(dict *d, const void *key) {  
        dictEntry *he;  
      
        he = dictFind(d,key);  
        /* 获取字典集的方法 */  
        return he ? dictGetVal(he) : NULL;  
    }  
      
    /* A fingerprint is a 64 bit number that represents the state of the dictionary
     * at a given time, it's just a few dict properties xored together.
     * When an unsafe iterator is initialized, we get the dict fingerprint, and check
     * the fingerprint again when the iterator is released.
     * If the two fingerprints are different it means that the user of the iterator
     * performed forbidden operations against the dictionary while iterating. */  
    /* 通过指纹来禁止每个不安全的哈希迭代器的非法操作,每个不安全迭代器只能有一个指纹 */  
    long long dictFingerprint(dict *d) {  
        long long integers[6], hash = 0;  
        int j;  
      
        integers[0] = (long) d->ht[0].table;  
        integers[1] = d->ht[0].size;  
        integers[2] = d->ht[0].used;  
        integers[3] = (long) d->ht[1].table;  
        integers[4] = d->ht[1].size;  
        integers[5] = d->ht[1].used;  
      
        /* We hash N integers by summing every successive integer with the integer
         * hashing of the previous sum. Basically:
         *
         * Result = hash(hash(hash(int1)+int2)+int3) ...
         *
         * This way the same set of integers in a different order will (likely) hash
         * to a different number. */  
        for (j = 0; j < 6; j++) {  
            hash += integers[j];  
            /* For the hashing step we use Tomas Wang's 64 bit integer hash. */  
            hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;  
            hash = hash ^ (hash >> 24);  
            hash = (hash + (hash << 3)) + (hash << 8); // hash * 265  
            hash = hash ^ (hash >> 14);  
            hash = (hash + (hash << 2)) + (hash << 4); // hash * 21  
            hash = hash ^ (hash >> 28);  
            hash = hash + (hash << 31);  
        }  
        return hash;  
    }  
      
    /* 获取哈希迭代器,默认不安全的 */  
    dictIterator *dictGetIterator(dict *d)  
    {  
        dictIterator *iter = zmalloc(sizeof(*iter));  
      
        iter->d = d;  
        iter->table = 0;  
        iter->index = -1;  
        iter->safe = 0;  
        iter->entry = NULL;  
        iter->nextEntry = NULL;  
        return iter;  
    }  
      
    /* 获取安全哈希迭代器 */  
    dictIterator *dictGetSafeIterator(dict *d) {  
        dictIterator *i = dictGetIterator(d);  
      
        i->safe = 1;  
        return i;  
    }  
      
    /* 迭代器获取下一个集合点 */  
    dictEntry *dictNext(dictIterator *iter)  
    {  
        while (1) {  
            if (iter->entry == NULL) {  
                dictht *ht = &iter->d->ht[iter->table];  
                if (iter->index == -1 && iter->table == 0) {  
                    //如果迭代器index下标为-1说明还没开始使用,设置迭代器的指纹或增加引用计数量  
                    if (iter->safe)  
                        iter->d->iterators++;  
                    else  
                        iter->fingerprint = dictFingerprint(iter->d);  
                }  
                //迭代器下标递增  
                iter->index++;  
                if (iter->index >= (long) ht->size) {  
                    if (dictIsRehashing(iter->d) && iter->table == 0) {  
                        iter->table++;  
                        iter->index = 0;  
                        ht = &iter->d->ht[1];  
                    } else {  
                        break;  
                    }  
                }  
                //根据下标选择集合点  
                iter->entry = ht->table[iter->index];  
            } else {  
                iter->entry = iter->nextEntry;  
            }  
            if (iter->entry) {  
                /* We need to save the 'next' here, the iterator user
                 * may delete the entry we are returning. */  
                iter->nextEntry = iter->entry->next;  
                return iter->entry;  
            }  
        }  
        return NULL;  
    }  
      
    /* 释放迭代器 */  
    void dictReleaseIterator(dictIterator *iter)  
    {  
        if (!(iter->index == -1 && iter->table == 0)) {  
            if (iter->safe)  
                iter->d->iterators--;  
            else  
                //这时判断指纹是否还是之前定义的那个  
                assert(iter->fingerprint == dictFingerprint(iter->d));  
        }  
        zfree(iter);  
    }  
      
    /* Return a random entry from the hash table. Useful to
     * implement randomized algorithms */  
    /* 随机获取一个集合点 */  
    dictEntry *dictGetRandomKey(dict *d)  
    {  
        dictEntry *he, *orighe;  
        unsigned int h;  
        int listlen, listele;  
      
        if (dictSize(d) == 0) return NULL;  
        if (dictIsRehashing(d)) _dictRehashStep(d);  
        if (dictIsRehashing(d)) {  
            do {  
                //随机数向2个表格的总数求余运算  
                h = random() % (d->ht[0].size+d->ht[1].size);  
                he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :  
                                          d->ht[0].table[h];  
            } while(he == NULL);  
        } else {  
            do {  
                h = random() & d->ht[0].sizemask;  
                he = d->ht[0].table[h];  
            } while(he == NULL);  
        }  
      
        /* Now we found a non empty bucket, but it is a linked
         * list and we need to get a random element from the list.
         * The only sane way to do so is counting the elements and
         * select a random index. */  
        listlen = 0;  
        orighe = he;  
        while(he) {  
            he = he->next;  
            listlen++;  
        }  
        listele = random() % listlen;  
        he = orighe;  
        while(listele--) he = he->next;  
        return he;  
    }  
      
    /* Function to reverse bits. Algorithm from:
     * http://graphics.stanford.edu/~se ... tml#ReverseParallel */  
    /* 很神奇的翻转位 */  
    static unsigned long rev(unsigned long v) {  
        unsigned long s = 8 * sizeof(v); // bit size; must be power of 2  
        unsigned long mask = ~0;  
        while ((s >>= 1) > 0) {  
            mask ^= (mask << s);  
            v = ((v >> s) & mask) | ((v << s) & ~mask);  
        }  
        return v;  
    }  
      
    /* dictScan() is used to iterate over the elements of a dictionary.
     *
     * Iterating works in the following way:
     *
     * 1) Initially you call the function using a cursor (v) value of 0.
     * 2) The function performs one step of the iteration, and returns the
     *    new cursor value that you must use in the next call.
     * 3) When the returned cursor is 0, the iteration is complete.
     *
     * The function guarantees that all the elements that are present in the
     * dictionary from the start to the end of the iteration are returned.
     * However it is possible that some element is returned multiple time.
     *
     * For every element returned, the callback 'fn' passed as argument is
     * called, with 'privdata' as first argument and the dictionar entry
     * 'de' as second argument.
     *
     * HOW IT WORKS.
     *
     * The algorithm used in the iteration was designed by Pieter Noordhuis.
     * The main idea is to increment a cursor starting from the higher order
     * bits, that is, instead of incrementing the cursor normally, the bits
     * of the cursor are reversed, then the cursor is incremented, and finally
     * the bits are reversed again.
     *
     * This strategy is needed because the hash table may be resized from one
     * call to the other call of the same iteration.
     *
     * dict.c hash tables are always power of two in size, and they
     * use chaining, so the position of an element in a given table is given
     * always by computing the bitwise AND between Hash(key) and SIZE-1
     * (where SIZE-1 is always the mask that is equivalent to taking the rest
     *  of the division between the Hash of the key and SIZE).
     *
     * For example if the current hash table size is 16, the mask is
     * (in binary) 1111. The position of a key in the hash table will be always
     * the last four bits of the hash output, and so forth.
     *
     * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
     *
     * If the hash table grows, elements can go anyway in one multiple of
     * the old bucket: for example let's say that we already iterated with
     * a 4 bit cursor 1100, since the mask is 1111 (hash table size = 16).
     *
     * If the hash table will be resized to 64 elements, and the new mask will
     * be 111111, the new buckets that you obtain substituting in ??1100
     * either 0 or 1, can be targeted only by keys that we already visited
     * when scanning the bucket 1100 in the smaller hash table.
     *
     * By iterating the higher bits first, because of the inverted counter, the
     * cursor does not need to restart if the table size gets bigger, and will
     * just continue iterating with cursors that don't have '1100' at the end,
     * nor any other combination of final 4 bits already explored.
     *
     * Similarly when the table size shrinks over time, for example going from
     * 16 to 8, If a combination of the lower three bits (the mask for size 8
     * is 111) was already completely explored, it will not be visited again
     * as we are sure that, we tried for example, both 0111 and 1111 (all the
     * variations of the higher bit) so we don't need to test it again.
     *
     * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
     *
     * Yes, this is true, but we always iterate the smaller one of the tables,
     * testing also all the expansions of the current cursor into the larger
     * table. So for example if the current cursor is 101 and we also have a
     * larger table of size 16, we also test (0)101 and (1)101 inside the larger
     * table. This reduces the problem back to having only one table, where
     * the larger one, if exists, is just an expansion of the smaller one.
     *
     * LIMITATIONS
     *
     * This iterator is completely stateless, and this is a huge advantage,
     * including no additional memory used.
     *
     * The disadvantages resulting from this design are:
     *
     * 1) It is possible that we return duplicated elements. However this is usually
     *    easy to deal with in the application level.
     * 2) The iterator must return multiple elements per call, as it needs to always
     *    return all the keys chained in a given bucket, and all the expansions, so
     *    we are sure we don't miss keys moving.
     * 3) The reverse cursor is somewhat hard to understand at first, but this
     *    comment is supposed to help.
     */  
    /* 扫描方法 */  
    unsigned long dictScan(dict *d,  
                           unsigned long v,  
                           dictScanFunction *fn,  
                           void *privdata)  
    {  
        dictht *t0, *t1;  
        const dictEntry *de;  
        unsigned long m0, m1;  
      
        if (dictSize(d) == 0) return 0;  
      
        if (!dictIsRehashing(d)) {  
            t0 = &(d->ht[0]);  
            m0 = t0->sizemask;  
      
            /* Emit entries at cursor */  
            de = t0->table[v & m0];  
            while (de) {  
                fn(privdata, de);  
                de = de->next;  
            }  
      
        } else {  
            t0 = &d->ht[0];  
            t1 = &d->ht[1];  
      
            /* Make sure t0 is the smaller and t1 is the bigger table */  
            if (t0->size > t1->size) {  
                t0 = &d->ht[1];  
                t1 = &d->ht[0];  
            }  
      
            m0 = t0->sizemask;  
            m1 = t1->sizemask;  
      
            /* Emit entries at cursor */  
            de = t0->table[v & m0];  
            while (de) {  
                fn(privdata, de);  
                de = de->next;  
            }  
      
            /* Iterate over indices in larger table that are the expansion
             * of the index pointed to by the cursor in the smaller table */  
            do {  
                /* Emit entries at cursor */  
                de = t1->table[v & m1];  
                while (de) {  
                    fn(privdata, de);  
                    de = de->next;  
                }  
      
                /* Increment bits not covered by the smaller mask */  
                v = (((v | m0) + 1) & ~m0) | (v & m0);  
      
                /* Continue while bits covered by mask difference is non-zero */  
            } while (v & (m0 ^ m1));  
        }  
      
        /* Set unmasked bits so incrementing the reversed cursor
         * operates on the masked bits of the smaller table */  
        v |= ~m0;  
      
        /* Increment the reverse cursor */  
        v = rev(v);  
        v++;  
        v = rev(v);  
      
        return v;  
    }  
      
    /* ------------------------- private functions ------------------------------ */  
      
    /* Expand the hash table if needed */  
    /* 判断是否需要扩容 */  
    static int _dictExpandIfNeeded(dict *d)  
    {  
        /* Incremental rehashing already in progress. Return. */  
        if (dictIsRehashing(d)) return DICT_OK;  
      
        /* If the hash table is empty expand it to the initial size. */  
        if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);  
      
        /* If we reached the 1:1 ratio, and we are allowed to resize the hash
         * table (global setting) or we should avoid it but the ratio between
         * elements/buckets is over the "safe" threshold, we resize doubling
         * the number of buckets. */  
        /* 判断是否需要扩容 */  
        if (d->ht[0].used >= d->ht[0].size &&  
            (dict_can_resize ||  
             d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))  
        {  
            return dictExpand(d, d->ht[0].used*2);  
        }  
        return DICT_OK;  
    }  
      
    /* Our hash table capability is a power of two */  
    /* 哈希表的容量以2的幂次方,所以数量以2的幂次向上取 */  
    static unsigned long _dictNextPower(unsigned long size)  
    {  
        unsigned long i = DICT_HT_INITIAL_SIZE;  
      
        if (size >= LONG_MAX) return LONG_MAX;  
        while(1) {  
            if (i >= size)  
                return i;  
            i *= 2;  
        }  
    }  
      
    /* Returns the index of a free slot that can be populated with
     * a hash entry for the given 'key'.
     * If the key already exists, -1 is returned.
     *
     * Note that if we are in the process of rehashing the hash table, the
     * index is always returned in the context of the second (new) hash table. */  
    /* 获取key值对应的哈希索引值,如果已经存在此key则返回-1 */  
    static int _dictKeyIndex(dict *d, const void *key)  
    {  
        unsigned int h, idx, table;  
        dictEntry *he;  
      
        /* Expand the hash table if needed */  
        if (_dictExpandIfNeeded(d) == DICT_ERR)  
            return -1;  
        /* Compute the key hash value */  
        h = dictHashKey(d, key);  
        for (table = 0; table <= 1; table++) {  
            idx = h & d->ht[table].sizemask;  
            /* Search if this slot does not already contain the given key */  
            he = d->ht[table].table[idx];  
            while(he) {  
                if (dictCompareKeys(d, key, he->key))  
                    return -1;  
                he = he->next;  
            }  
            if (!dictIsRehashing(d)) break;  
        }  
        return idx;  
    }  
      
    /* 清空整个字典,即清空里面的2张哈希表 */  
    void dictEmpty(dict *d, void(callback)(void*)) {  
        _dictClear(d,&d->ht[0],callback);  
        _dictClear(d,&d->ht[1],callback);  
        d->rehashidx = -1;  
        d->iterators = 0;  
    }  
      
    /*启用哈希表调整*/  
    void dictEnableResize(void) {  
        dict_can_resize = 1;  
    }  
      
    /* 启用哈希表调整 */  
    void dictDisableResize(void) {  
        dict_can_resize = 0;  
    }  
      
    #if 0  
      
    /* The following is code that we don't use for Redis currently, but that is part
    of the library. */  
    /* redis中还存着调试的代码 */  
    /* ----------------------- Debugging ------------------------*/  
      
    #define DICT_STATS_VECTLEN 50  
    static void _dictPrintStatsHt(dictht *ht) {  
        unsigned long i, slots = 0, chainlen, maxchainlen = 0;  
        unsigned long totchainlen = 0;  
        unsigned long clvector[DICT_STATS_VECTLEN];  
      
        if (ht->used == 0) {  
            printf("No stats available for empty dictionaries\n");  
            return;  
        }  
      
        for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector = 0;  
        for (i = 0; i < ht->size; i++) {  
            dictEntry *he;  
      
            if (ht->table == NULL) {  
                clvector[0]++;  
                continue;  
            }  
            slots++;  
            /* For each hash entry on this slot... */  
            chainlen = 0;  
            he = ht->table;  
            while(he) {  
                chainlen++;  
                he = he->next;  
            }  
            clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;  
            if (chainlen > maxchainlen) maxchainlen = chainlen;  
            totchainlen += chainlen;  
        }  
        printf("Hash table stats:\n");  
        printf(" table size: %ld\n", ht->size);  
        printf(" number of elements: %ld\n", ht->used);  
        printf(" different slots: %ld\n", slots);  
        printf(" max chain length: %ld\n", maxchainlen);  
        printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);  
        printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);  
        printf(" Chain length distribution:\n");  
        for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {  
            if (clvector == 0) continue;  
            printf("   %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector, ((float)clvector/ht->size)*100);  
        }  
    }  
      
    void dictPrintStats(dict *d) {  
        _dictPrintStatsHt(&d->ht[0]);  
        if (dictIsRehashing(d)) {  
            printf("-- Rehashing into ht[1]:\n");  
            _dictPrintStatsHt(&d->ht[1]);  
        }  
    }  
      
    /* ----------------------- StringCopy Hash Table Type ------------------------*/  
      
    static unsigned int _dictStringCopyHTHashFunction(const void *key)  
    {  
        return dictGenHashFunction(key, strlen(key));  
    }  
      
    static void *_dictStringDup(void *privdata, const void *key)  
    {  
        int len = strlen(key);  
        char *copy = zmalloc(len+1);  
        DICT_NOTUSED(privdata);  
      
        memcpy(copy, key, len);  
        copy[len] = '\0';  
        return copy;  
    }  
      
    static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,  
            const void *key2)  
    {  
        DICT_NOTUSED(privdata);  
      
        return strcmp(key1, key2) == 0;  
    }  
      
    static void _dictStringDestructor(void *privdata, void *key)  
    {  
        DICT_NOTUSED(privdata);  
      
        zfree(key);  
    }  
      
    /* 定义了3种类型的dictType,有些类型无val dup方法的定义 */  
    dictType dictTypeHeapStringCopyKey = {  
        _dictStringCopyHTHashFunction, /* hash function */  
        _dictStringDup,                /* key dup */  
        NULL,                          /* val dup */  
        _dictStringCopyHTKeyCompare,   /* key compare */  
        _dictStringDestructor,         /* key destructor */  
        NULL                           /* val destructor */  
    };  
      
    /* This is like StringCopy but does not auto-duplicate the key.
     * It's used for intepreter's shared strings. */  
    dictType dictTypeHeapStrings = {  
        _dictStringCopyHTHashFunction, /* hash function */  
        NULL,                          /* key dup */  
        NULL,                          /* val dup */  
        _dictStringCopyHTKeyCompare,   /* key compare */  
        _dictStringDestructor,         /* key destructor */  
        NULL                           /* val destructor */  
    };  
      
    /* This is like StringCopy but also automatically handle dynamic
     * allocated C strings as values. */  
    dictType dictTypeHeapStringCopyKeyValue = {  
        _dictStringCopyHTHashFunction, /* hash function */  
        _dictStringDup,                /* key dup */  
        _dictStringDup,                /* val dup */  
        _dictStringCopyHTKeyCompare,   /* key compare */  
        _dictStringDestructor,         /* key destructor */  
        _dictStringDestructor,         /* val destructor */  
    };  
    #endif  
    </span>  


哈希算法的索引计算其实我还是有点不理解的地方的,比如他的索引计算,会从一张旧表映射到一个新表,作者出于什么目的,也许以后再看的时候才会明白吧。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-25790-1-1.html 上篇帖子: Redis源码分析(二)--结构体分析(1) 下篇帖子: Redis源码分析(四)-- sds字符串
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表