设为首页 收藏本站
查看: 655|回复: 0

[经验分享] MORE SQL?

[复制链接]

尚未签到

发表于 2016-11-7 06:54:39 | 显示全部楼层 |阅读模式
  看到CSDN里面有篇名为"MoreSQL(NewSQL)挑战 NoSQL?"的文章,大概意思就是不用
更改现有关系型数据库的前提下提高数据库的性能。
文章中有介绍到现在大家之所以对于NOSQL很热衷,是因为关系型数据库对于join操作
性能极其低下,然后我看了下Tokutek的网站,里面有介绍为什么在关系型数据库中会
出现这种情况,但一直没明白,意思是说在查询的时候会出现索引“join”主键的情况,
思索良久不得其中原委,希望大牛们指点下,我把部分原文给贴出来下:
  
twitter feed for a chance to win.
  Did you know that the following query actually performs a JOIN? You can’t see it, but it’s there:
  
SELECT the_day, COUNT(*), SUM(clicks), SUM(cost)
FROM ad_clicks_by_day
WHERE the_day >= '2005-07-01' AND the_day < '2005-07-07'
GROUP BY the_day;
Let me explain.

Suppose you define the table as follows:
  
CREATE TABLE ad_clicks_by_day (
customer INT  NOT NULL,
the_day  DATE NOT NULL,
clicks   INT  NOT NULL DEFAULT 0,
cost     INT  NOT NULL DEFAULT 0,
PRIMARY KEY(customer, the_day),
INDEX(the_day)
) ENGINE=InnoDB;
What happens when MySQL executes this query? Here’s the EXPLAIN:
  
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: ad_clicks_by_day
         type: range
possible_keys: the_day
          key: the_day
      key_len: 3
          ref: NULL
         rows: 368
        Extra: Using where
That looks fine, doesn’t it? It’s using an index range scan to find approximately 368 matching rows, and adding up the clicks and cost for them. Can it be done any more efficiently than this?

In fact, it turns out that it’s possible to execute this query much more efficiently. What happens internally when the server executes this query is that it begins reading from the ‘the_day’ index, and for each row it finds, it performs a lookup in the primary key (which, in InnoDB, stores the whole table) to find the other columns mentioned in the query. That is, it’s joining the index to the primary key! This is not just an ivory-tower abstraction. In real-life workloads, the random I/O caused by such index-to-table joins slows queries dramatically.

The “join” here isn’t really the same as a true table-to-table SQL JOIN in some ways, and it has a little less overhead at the server level than a table-to-table join, but in terms of the way an index-to-row lookup works, it’s quite similar in many ways.

If you’re skilled at logical and physical database design, you already noticed that my example can be improved by indexing differently: just put the primary key on (the_day, customer) instead of the other way around. Then the query will use the primary key instead of the secondary key, and the whole row is available to the query without doing a join to another index. This is called a covering index, which means that the index covers the whole query–there is no need for any data outside the index. You’ll see “Using index” in the Extra column from EXPLAIN when an index covers a query.

But then what if we want to group the results by customer? No problem, we can just add another index. To achieve the same results for ad-hoc querying, we’ll need to index every column:
  原文的网址是:http://www.tokutek.com/2011/09/are-you-forcing-mysql-to-do-twice-as-many-joins-as-necessary/
  

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-296695-1-1.html 上篇帖子: 在SQL Server中创建数据库主要有那种方式? 下篇帖子: sql总结
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表