设为首页 收藏本站
查看: 743|回复: 0

[经验分享] hadoop实现单表和多表关联

[复制链接]

尚未签到

发表于 2016-12-9 07:56:29 | 显示全部楼层 |阅读模式
转载请注明:http://hanlaiming.freetzi.com/?p=123
在mapreduce上编写简单应用后,开始学习稍微高级一点的单表关联和多表关联。
在学习过程中我参考了这篇文章,谢谢http://www.cnblogs.com/xia520pi/archive/2012/06/04/2534533.html,里面很多基本的内容很实用。
一、单表关联。
实例中给出child-parent(孩子——父母)表,要求输出grandchild-grandparent(孙子——爷奶)表。
样例输入如下所示。

  • file:child parent
  • Tom Lucy
  • Tom Jack
  • Jone Lucy
  • Jone Jack
  • Lucy Mary
  • Lucy Ben
  • Jack Alice
  • Jack Jesse
  • Terry Alice
  • Terry Jesse
  • Philip Terry
  • Philip Alma
  • Mark Terry
  • Mark Alma
  •   家族树状关系谱:

DSC0000.png
家族谱
样例输出如下所示。

  • file:grandchild grandparent
  • Tom   Alice
  • Tom   Jesse
  • Jone   Alice
  • Jone   Jesse
  • Tom   Mary
  • Tom   Ben
  • Jone   Mary
  • Jone   Ben
  • Philip   Alice
  • Philip   Jesse
  • Mark   Alice
  • Mark   Jesse

设计思路
分析这个实例,显然需要进行单表连接,连接的是左表parent列和右表child列,且左表右表同一个表
连接结果除去连接的两列就是所需要的结果——"grandchild--grandparent"表。要用MapReduce解决这个实例,首先应该考虑如何实现自连接其次就是连接列设置最后结果整理
考虑到MapReduce的shuffle过程会将相同的key会连接在一起,所以可以将map结果的key设置成待连接,然后列中相同的值就自然会连接在一起了。再与最开始的分析联系起来:
  要连接的是左表的parent列和右表的child列,且左表和右表是同一个表,所以在map阶段读入数据分割childparent之后,会将parent设置成keychild设置成value进行输出,并作为左表;再将同一对childparent中的child设置成keyparent设置成value进行输出,作为右表。为了区分输出中的左右表,需要在输出的value加上左右表信息,比如在value的String最开始处加上字符1表示左表,加上字符2表示右表。这样在map的结果中就形成了左表和右表,然后在shuffle过程中完成连接。reduce接收到连接的结果,其中每个key的value-list就包含了"grandchild--grandparent"关系。取出每个key的value-list进行解析,将左表中的child放入一个数组右表中的parent放入一个数组,然后对两个数组求笛卡尔积就是最后的结果了。
代码实现:

  • import java.io.IOException;
  • import java.util.*;
  • import org.apache.hadoop.conf.Configuration;
  • import org.apache.hadoop.fs.Path;
  • import org.apache.hadoop.io.IntWritable;
  • import org.apache.hadoop.io.Text;
  • import org.apache.hadoop.mapreduce.Job;
  • import org.apache.hadoop.mapreduce.Mapper;
  • import org.apache.hadoop.mapreduce.Reducer;
  • import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  • import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  • import org.apache.hadoop.util.GenericOptionsParser;
  • public class STjoin {
  • public static int time = 0;
  • /*
  • * map将输出分割child和parent,然后正序输出一次作为右表,
  • * 反序输出一次作为左表,需要注意的是在输出的value中必须
  • * 加上左右表的区别标识。
  • */
  • public static class Map extends Mapper<Object, Text, Text, Text> {
  • // 实现map函数
  • public void map(Object key, Text value, Context context)
  • throws IOException, InterruptedException {
  • String childname = new String();// 孩子名称
  • String parentname = new String();// 父母名称
  • String relationtype = new String();// 左右表标识
  • // 输入的一行预处理文本
  • StringTokenizer itr=new StringTokenizer(value.toString());
  • String[] values=new String[2];
  • int i=0;
  • while(itr.hasMoreTokens()){
  • values=itr.nextToken();
  • i++;
  • }
  • if (values[0].compareTo("child") != 0) {
  • childname = values[0];
  • parentname = values[1];
  • // 输出左表
  • relationtype = "1";
  • context.write(new Text(values[1]), new Text(relationtype +
  • "+"+ childname + "+" + parentname));
  • // 输出右表
  • relationtype = "2";
  • context.write(new Text(values[0]), new Text(relationtype +
  • "+"+ childname + "+" + parentname));
  • }
  • }
  • }
  • public static class Reduce extends Reducer<Text, Text, Text, Text> {
  • // 实现reduce函数
  • public void reduce(Text key, Iterable<Text> values, Context context)
  • throws IOException, InterruptedException {
  • // 输出表头
  • if (0 == time) {
  • context.write(new Text("grandchild"), new Text("grandparent"));
  • time++;
  • }
  • int grandchildnum = 0;
  • String[] grandchild = new String[10];
  • int grandparentnum = 0;
  • String[] grandparent = new String[10];
  • Iterator ite = values.iterator();
  • while (ite.hasNext()) {
  • String record = ite.next().toString();
  • int len = record.length();
  • int i = 2;
  • if (0 == len) {
  • continue;
  • }
  • // 取得左右表标识
  • char relationtype = record.charAt(0);
  • // 定义孩子和父母变量
  • String childname = new String();
  • String parentname = new String();
  • // 获取value-list中value的child
  • while (record.charAt(i) != '+') {
  • childname += record.charAt(i);
  • i++;
  • }
  • i = i + 1;
  • // 获取value-list中value的parent
  • while (i < len) {
  • parentname += record.charAt(i);
  • i++;
  • }
  • // 左表,取出child放入grandchildren
  • if ('1' == relationtype) {
  • grandchild[grandchildnum] = childname;
  • grandchildnum++;
  • }
  • // 右表,取出parent放入grandparent
  • if ('2' == relationtype) {
  • grandparent[grandparentnum] = parentname;
  • grandparentnum++;
  • }
  • }
  • // grandchild和grandparent数组求笛卡尔儿积
  • if (0 != grandchildnum && 0 != grandparentnum) {
  • for (int m = 0; m < grandchildnum; m++) {
  • for (int n = 0; n < grandparentnum; n++) {
  • // 输出结果
  • context.write(new Text(grandchild[m]), new Text(grandparent[n]));
  • }
  • }
  • }
  • }
  • }
  • public static void main(String[] args) throws Exception {
  • Configuration conf = new Configuration();
  • String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
  • if (otherArgs.length != 2) {
  • System.err.println("Usage: Single Table Join <in> <out>");
  • System.exit(2);
  • }
  • Job job = new Job(conf, "Single Table Join");
  • job.setJarByClass(STjoin.class);
  • // 设置Map和Reduce处理类
  • job.setMapperClass(Map.class);
  • job.setReducerClass(Reduce.class);
  • // 设置输出类型
  • job.setOutputKeyClass(Text.class);
  • job.setOutputValueClass(Text.class);
  • // 设置输入和输出目录
  • FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
  • FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
  • System.exit(job.waitForCompletion(true) ? 0 : 1);
  • }
  • }


二、多表关联
输入是两个文件,一个代表工厂表,包含工厂名列和地址编号列;另一个代表地址表,包含地址名列和地址编号列。要求从输入数据中找出工厂名和地址名的对应关系,输出"工厂名——地址名"表。
样例输入如下所示。

  • 1)factory:
  • factoryname     addressed
  • Beijing Red Star     1
  • Shenzhen Thunder     3
  • Guangzhou Honda     2
  • Beijing Rising     1
  • Guangzhou Development Bank 2
  • Tencent         3
  • Back of Beijing      1
  • 2)address:
  • addressID addressname
  • 1     Beijing
  • 2     Guangzhou
  • 3     Shenzhen
  • 4     Xian
  • 样例输出如下所示。
  • factoryname     addressname
  • Back of Beijing      Beijing
  • Beijing Red Star     Beijing
  • Beijing Rising       Beijing
  • Guangzhou Development Bank Guangzhou
  • Guangzhou Honda     Guangzhou
  • Shenzhen Thunder     Shenzhen
  • Tencent         Shenzhen
多表关联和单表关联相似,都类似于数据库中的自然连接。相比单表关联,多表关联的左右表和连接列更加清楚。所以可以采用和单表关联的相同的处理方式,map识别出输入的行属于哪个表之后,对其进行分割,将连接的列值保存在key中,另一列和左右表标识保存在value中,然后输出。reduce拿到连接结果之后,解析value内容,根据标志将左右表内容分开存放,然后求笛卡尔积,最后直接输出。
代码实现:

  • import java.io.IOException;
  • import java.util.*;
  • import org.apache.hadoop.conf.Configuration;
  • import org.apache.hadoop.fs.Path;
  • import org.apache.hadoop.io.IntWritable;
  • import org.apache.hadoop.io.Text;
  • import org.apache.hadoop.mapreduce.Job;
  • import org.apache.hadoop.mapreduce.Mapper;
  • import org.apache.hadoop.mapreduce.Reducer;
  • import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  • import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  • import org.apache.hadoop.util.GenericOptionsParser;
  • public class MTjoin {
  • public static int time = 0;
  • /*
  • * 在map中先区分输入行属于左表还是右表,然后对两列值进行分割,
  • * 保存连接列在key值,剩余列和左右表标志在value中,最后输出
  • */
  • public static class Map extends Mapper<Object, Text, Text, Text> {
  • // 实现map函数
  • public void map(Object key, Text value, Context context)
  • throws IOException, InterruptedException {
  • String line = value.toString();// 每行文件
  • String relationtype = new String();// 左右表标识
  • // 输入文件首行,不处理
  • if (line.contains("factoryname") == true
  • || line.contains("addressed") == true) {
  • return;
  • }
  • // 输入的一行预处理文本
  • StringTokenizer itr = new StringTokenizer(line);
  • String mapkey = new String();
  • String mapvalue = new String();
  • int i = 0;
  • while (itr.hasMoreTokens()) {
  • // 先读取一个单词
  • String token = itr.nextToken();
  • // 判断该地址ID就把存到"values[0]"
  • if (token.charAt(0) >= '0' && token.charAt(0) <= '9') {
  • mapkey = token;
  • if (i > 0) {
  • relationtype = "1";
  • } else {
  • relationtype = "2";
  • }
  • continue;
  • }
  • // 存工厂名
  • mapvalue += token + " ";
  • i++;
  • }
  • // 输出左右表
  • context.write(new Text(mapkey), new Text(relationtype + "+"+ mapvalue));
  • }
  • }
  • /*
  • * reduce解析map输出,将value中数据按照左右表分别保存,
  •   * 然后求出笛卡尔积,并输出。
  • */
  • public static class Reduce extends Reducer<Text, Text, Text, Text> {
  • // 实现reduce函数
  • public void reduce(Text key, Iterable<Text> values, Context context)
  • throws IOException, InterruptedException {
  • // 输出表头
  • if (0 == time) {
  • context.write(new Text("factoryname"), new Text("addressname"));
  • time++;
  • }
  • int factorynum = 0;
  • String[] factory = new String[10];
  • int addressnum = 0;
  • String[] address = new String[10];
  • Iterator ite = values.iterator();
  • while (ite.hasNext()) {
  • String record = ite.next().toString();
  • int len = record.length();
  • int i = 2;
  • if (0 == len) {
  • continue;
  • }
  • // 取得左右表标识
  • char relationtype = record.charAt(0);
  • // 左表
  • if ('1' == relationtype) {
  • factory[factorynum] = record.substring(i);
  • factorynum++;
  • }
  • // 右表
  • if ('2' == relationtype) {
  • address[addressnum] = record.substring(i);
  • addressnum++;
  • }
  • }
  • // 求笛卡尔积
  • if (0 != factorynum && 0 != addressnum) {
  • for (int m = 0; m < factorynum; m++) {
  • for (int n = 0; n < addressnum; n++) {
  • // 输出结果
  • context.write(new Text(factory[m]),
  • new Text(address[n]));
  • }
  • }
  • }
  • }
  • }

  • public static void main(String[] args) throws Exception {
  • Configuration conf = new Configuration();
  • String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
  • if (otherArgs.length != 2) {
  • System.err.println("Usage: Multiple Table Join <in> <out>");
  • System.exit(2);
  • }
  • Job job = new Job(conf, "Multiple Table Join");
  • job.setJarByClass(MTjoin.class);
  • // 设置Map和Reduce处理类
  • job.setMapperClass(Map.class);
  • job.setReducerClass(Reduce.class);
  • // 设置输出类型
  • job.setOutputKeyClass(Text.class);
  • job.setOutputValueClass(Text.class);
  • // 设置输入和输出目录
  • FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
  • FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
  • System.exit(job.waitForCompletion(true) ? 0 : 1);
  • }
  • }

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-311607-1-1.html 上篇帖子: [Hadoop] 实际应用场景之 下篇帖子: 大数据框架hadoop的配置系统
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表