设为首页 收藏本站
查看: 826|回复: 0

[经验分享] Hadoop中shuffle阶段流程分析

[复制链接]

尚未签到

发表于 2016-12-10 07:21:31 | 显示全部楼层 |阅读模式
宏观上,Hadoop每个作业要经历两个阶段:Map phase和reduce phase。对于Map phase,又主要包含四个子阶段:从磁盘上读数据-》执行map函数-》combine结果 -》将结果写到本地磁盘上;对于reduce phase,同样包含四个子阶段:从各个map task上读相应的数据(shuffle)-》sort-》执行reduce函数-》将结果写到HDFS中。  Hadoop处理流程中的两个子阶段严重降低了其性能。第一个是map阶段产生的中间结果要写到磁盘上,这样做的主要目的是提高系统的可靠性,但代价是降低了系统的性能,实际上,Hadoop的改进版–MapReduce Online去除了这个阶段,而采用其他更高效的方式提高系统可靠性(见参考资料[1]);另一个是shuffle阶段采用HTTP协议从各个map task上远程拷贝结果,这种设计思路(远程拷贝,协议采用http)同样降低了系统性能。实际上,Baidu公司正试图将该部分代码替换成C++代码来提高性能(见参考资料[2])。
  本文首先着重分析shuffle阶段的具体流程,然后分析了其低效的原因,最后给出了可能的改进方法。
DSC0000.jpg

  如图所示,每个reduce task都会有一个后台进程GetMapCompletionEvents,它获取heartbeat中(从JobTracker)传过来的已经完成的task列表,并将与该reduce task对应的数据位置信息保存到mapLocations中,mapLocations中的数据位置信息经过滤和去重(相同的位置信息因为某种原因,可能发过来多次)等处理后保存到集合scheduledCopies中,然后由几个拷贝线程(默认为5个)通过HTTP并行的拷贝数据,同时线程InMemFSMergeThread和LocalFSMerger会对拷贝过来的数据进行归并排序。
  主要有两个方面影响shuffle阶段的性能:(1)数据完全是远程拷贝 (2)采用HTTP协议进行数据传输。对于第一个方面,如果采用某种策略(修改框架),让你reduce task也能有locality就好了;对于第二个方面,用新的更快的数据传输协议替换HTTP,也许能更快些, 如UDT协议(见参考资料[3]), 它在MapReduce的另一个C++开源实现Sector/Sphere(见参考资料[4])中被使用,效果不错!
  ————————————————————————————————————————-
  【参考资料】
  【1】http://code.google.com/p/hop/
  【2】http://wenku.baidu.com/view/8225e73f0912a21614792947.html
  【3】http://udt.sourceforge.net/
  【4】http://sector.sourceforge.net/

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-312030-1-1.html 上篇帖子: hadoop name node 双机热备 下篇帖子: hadoop_AVRO数据序列化系统_简介
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表