设为首页 收藏本站
查看: 1397|回复: 0

[经验分享] R语言与hadoop之间的千万柔情

[复制链接]

尚未签到

发表于 2016-12-10 08:30:12 | 显示全部楼层 |阅读模式
Hadoop的家族如此之强大,为什么还要结合R语言?
a. Hadoop家族的强大之处,在于对大数据的处理,让原来的不可能(TB,PB数据量计算),成为了可能。
b. R语言的强大之处,在于统计分析,在没有Hadoop之前,我们对于大数据的处理,要取样本,假设检验,做回归,长久以来R语言都是统计学家专属的工具。
c. 从a和b两点,我们可以看出,hadoop重点是全量数据分析,而R语言重点是样本数据分析。 两种技术放在一起,刚好是最长补短!
d. 模拟场景:对1PB的新闻网站访问日志做分析,预测未来流量变化
d1:用R语言,通过分析少量数据,对业务目标建回归建模,并定义指标。
d2:用Hadoop从海量日志数据中,提取指标数据
d3:用R语言模型,对指标数据进行测试和调优
d4:用Hadoop分步式算法,重写R语言的模型,部署上线
这个场景中,R和Hadoop分别都起着非常重要的作用。以计算机开发人员的思路,所有有事情都用Hadoop去做,没有数据建模和证明,”预测的结果”一定是有问题的。以统计人员的思路,所有的事情都用R去做,以抽样方式,得到的“预测的结果”也一定是有问题的。
所以让二者结合,是产界业的必然的导向,也是产界业和学术界的交集,同时也为交叉学科的人才提供了无限广阔的想象空间。

Mahout同样可以做数据挖掘和机器学习,和R语言的区别是什么?
a. Mahout是基于Hadoop的数据挖掘和机器学习的算法框架,Mahout的重点同样是解决大数据的计算的问题。
b. Mahout目前已支持的算法包括,协同过滤,推荐算法,聚类算法,分类算法,LDA, 朴素bayes,随机森林。上面的算法中,大部分都是距离的算法,可以通过矩阵分解后,充分利用MapReduce的并行计算框架,高效地完成计算任务。
c. Mahout的空白点,还有很多的数据挖掘算法,很难实现MapReduce并行化。Mahout的现有模型,都是通用模型,直接用到的项目中,计算结果 只会比随机结果好一点点。Mahout二次开发,要求有深厚的JAVA和Hadoop的技术基础,最好兼有 “线性代数”,“概率统计”,“算法导论” 等的基础知识。所以想玩转Mahout真的不是一件容易的事情。
d. R语言同样提供了Mahout支持的约大多数算法(除专有算法),并且还支持大量的Mahout不支持的算法,算法的增长速度比mahout快N倍。并且开发简单,参数配置灵活,对小型数据集运算速度非常快。
虽然,Mahout同样可以做数据挖掘和机器学习,但是和R语言的擅长领域并不重合。集百家之长,在适合的领域选择合适的技术,才能真正地“保质保量”做软件。

如何让Hadoop结合R语言?
从上一节我们看到,Hadoop和R语言是可以互补的,但所介绍的场景都是Hadoop和R语言的分别处理各自的数据。
一旦市场有需求,自然会有商家填补这个空白。
1). RHadoop
RHadoop是一款Hadoop和R语言的结合的产品,由RevolutionAnalytics公司开发,并将代码开源到github社区上面。 RHadoop包含三个R包 (rmr,rhdfs,rhbase),分别是对应Hadoop系统架构中的,MapReduce, HDFS, HBase 三个部分。
参考文章:
RHadoop实践系列之二:RHadoop安装与使用
RHadoop实践系列之四 rhbase安装与使用
2). RHive
RHive是一款通过R语言直接访问Hive的工具包,是由NexR一个韩国公司研发的。
参考文章:
R利剑NoSQL系列文章 之 Hive
用RHive从历史数据中提取逆回购信息
3). 重写Mahout
用R语言重写Mahout的实现也是一种结合的思路,我也做过相关的尝试。
参考文章:
用R解析Mahout用户推荐协同过滤算法(UserCF)
4).Hadoop调用R
上面说的都是R如何调用Hadoop,当然我们也可以反相操作,打通JAVA和R的连接通道,让Hadoop调用R的函数。但是,这部分还没有商家做出成形的产品。
我写了2个例子,大家可以自己尝试着结合,做出不一样的应用来。
参考文章:
Rserve与Java的跨平台通信
解惑rJava R与Java的高速通道

R和Hadoop在实际中的案例
R和Hadoop的结合,技术门槛还是有点高的。对于一个人来说,不仅要掌握Linux, Java, Hadoop, R的技术,还要具备 软件开发,算法,概率统计,线性代数,数据可视化,行业背景 的一些基本素质。
在公司部署这套环境,同样需要多个部门,多种人才的的配合。Hadoop运维,Hadoop算法研发,R语言建模,R语言MapReduce化,软件开发,测试等等。。。
所以,这样的案例并不太多。
我做过一些尝试和努力,已经整理成文章的有3个项目,文章中仅仅是实现思路。
参考文章:
RHadoop实践系列之三 R实现MapReduce的协同过滤算法
RHadoop实验 – 统计邮箱出现次数
用RHive从历史数据中提取逆回购信息
展位未来
对于R和Hadoop的结合,在近几年,肯定会生成爆发式的增长的。但由于跨学科会造成技术壁垒,人才会远远跟不上市场的需求。
所以,肯定会有更多的大数据工具,被发明!机会就在我们的手中,也许明天你的创新,就是我们追逐的方向!!
加油!!

参考自http://blog.fens.me/r-hadoop-intro/

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-312112-1-1.html 上篇帖子: 【Spark三十九】Spark比Hadoop速度快的原因总结 下篇帖子: windows上编译eclipse-plugin for hadoop-0.20.2-cdh3u3
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表