设为首页 收藏本站
查看: 592|回复: 0

[经验分享] hadoop输出内容到不同的文件

[复制链接]

尚未签到

发表于 2016-12-12 07:34:22 | 显示全部楼层 |阅读模式
  实现将不同的内容输出到不同的文件,使用Partitioner
  自定义的Partitioner
1、为何使用Partitioner,主要是想reduce的结果能够根据key再次分类输出到不同的文件夹中。
2、结果能够直观,同时做到对数据结果的简单的统计分析
  1、Partitioner是partitioner的基类,如果需要定制partitioner也需要继承该类。
2、HashPartitioner是mapreduce的默认partitioner。计算方法是:
which reduce=(key.hashCode() & Integer.MAX_VALUE) % numReduceTasks。等到当前的目的reduce.
3、BinaryPatitioner继承于Partitioner<BinaryComparable,V>,是Partitioner的偏特化子类,该类
提供leftOffset和rightOffset,在计算which reducer时仅对键值K的[rightOffset,leftOffset]这个区间取hash。
  4、KeyFieldBasedPartitioner也是基于hash的个partitioner,和BinaryPatitioner不同,它提供了
多个区间用于计算hash。当区间数为0时keyFieldBasedPartitioner退化成HashPartitioner.

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-312873-1-1.html 上篇帖子: hadoop 函数阅读笔记之releaseSlot() 下篇帖子: hadoop代码调试
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表