设为首页 收藏本站
查看: 1137|回复: 0

[经验分享] Hadoop白皮书(3):分布式计算框架MapReduce简介

[复制链接]

尚未签到

发表于 2016-12-12 09:10:21 | 显示全部楼层 |阅读模式
MapReduce 是一个高性能的批处理分布式计算框架,用于对海量数据进行并行分析和处理。与传统数据仓库和分析技术相比,MapReduce 适合处理各种类型的数据,包括结构化、半结构化和非结构化数据。数据量在 TB 和 PB 级别,在这个量级上,传统方法通常已经无法处理数据。MapReduce 将分析任务分为大量的并行 Map 任务和 Reduce 汇总任务两类。Map 任务运行在多个服务器上。目前部署的最大集群有 4000 个服务器。

MapReduce 适合处理的任务

复杂的数据:业务数据不能适合行列的数据库结构。数据可能来源于多种格式:多媒体数据、图像数据、文本数据、实时数据、传感器数据等等。当有新的数据来源时,可能会有新的数据格式的出现。MapReduce 可以存放和分析各种原始数据格式。

超大规模数据:很多公司仅仅应为数据存放成本过高就放弃了很多有价值的数据。新的数据来源使得问题更为严重,新的系统和用户带来比以往更多的数据。Hadoop的创新构架使用低成本的常规服务器储存和处理海量的数据。

新的分析手段:海量复杂数据分析需要使用新的方法。新的算法包括自然语言分析、模式识别等。只有 Hadoop 的构架才能方便高效地使用新的算法来处理和分析海量数据。

DSC0000.jpg
MapReduce 框架的核心优势:

1. 高度可扩展,可动态增加/削减计算节点,真正实现弹性计算。

2. 高容错能力,支持任务自动迁移、重试和预测执行,不受计算节点故障影响。

3. 公平调度算法,支持优先级和任务抢占,兼顾长/短任务,有效支持交互式任务。

4. 就近调度算法, 调度任务到最近的数据节点,有效降低网络带宽。

5. 动态灵活的资源分配和调度,达到资源利用最大化,计算节点不会出现闲置和过载的情况;同时支持资源配额管理。

6. 经过大量实际生产环境使用和验证,最大集群规模在 4000 个计算节点。


ref:http://cloud.watchstor.com/infra-139991.htm

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-313036-1-1.html 上篇帖子: 集群环境下配置hadoop,zookeeper,hbase第二部分 下篇帖子: Hadoop安全云盘开发(第5篇)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表