设为首页 收藏本站
查看: 572|回复: 0

[经验分享] Tez: 1 Apache Tez: A New Chapter in Hadoop Data Processing

[复制链接]

尚未签到

发表于 2016-12-13 06:44:00 | 显示全部楼层 |阅读模式
What is Apache Tez?
Apache Tez generalizes the MapReduce paradigm to execute a complex DAG (directed acyclic graph) of tasks. It also represents the next logical next step for Hadoop 2 and the introduction of with YARN and its more general-purpose resource management framework.
While MapReduce has served masterfully as the data processing backbone for Hadoop, its batch-oriented nature makes it unsuited for certain workloads like interactive query. Tez represents an alternate to the traditional MapReduce that allows for jobs to meet demands for fast response times and extreme throughput at petabyte scale. A great example of a benefactor of this new approach is Apache Hive and the work being done in theStinger Initiative
Motivation
Distributed data processing is the core application that Apache Hadoop is built around. Storing and analyzing large volumes and variety of data efficiently has been the cornerstone use case that has driven large scale adoption of Hadoop, and has resulted in creating enormous value for the Hadoop adopters. Over the years, while building and running data processing applications based on MapReduce, we have understood a lot about the strengths and weaknesses of this framework and how we would like to evolve the Hadoop data processing framework to meet the evolving needs of Hadoop users. As the Hadoop compute platform moves into its next phase with YARN, it has decoupled itself from MapReduce being the only application, and opened the opportunity to create a new data processing framework to meet the new challenges. Apache Tez aspires to live up to these lofty goals.
Key Design Themes
Higher-level data processing applications like Hive and Pig need an execution framework that can express their complex query logic in an efficient manner and then execute it with high performance. Apache Tez has been built around the following main design themes that solve these key challenges in the Hadoop data processing domain.
Ability to express, model and execute data processing logic
DSC0000.png Tez models data processing as a dataflow graph with vertices in the graph representing application logic and edges representing movement of data. A rich dataflow definition API allows users to express complex query logic in an intuitive manner and it is a natural fit for query plans produced by higher-level declarative applications like Hive and Pig. As an example, the diagram shows how to model an ordered distributed sort using range partitioning. The Preprocessor stage sends samples to a Sampler that calculates sorted data ranges for each data partition such that the work is uniformly distributed. The ranges are sent to Partition and Aggregate stages that read their assigned ranges and perform the data scatter-gather. This dataflow pipeline can be expressed as a single Tez job that will run the entire computation. Expanding this logical graph into a physical graph of tasks and executing it is taken care of by Tez.
Flexible Input-Processor-Output task model
DSC0001.png Tez models the user logic running in each vertex of the dataflow graph as a composition of Input, Processor and Output modules. Input & Output determine the data format and how and where it is read/written. Processor holds the data transformation logic. Tez does not impose any data format and only requires that a combination of Input, Processor and Output must be compatible with each other with respect to their formats when they are composed to instantiate a vertex task. Similarly, an Input and Output pair connecting two tasks should be compatible with each other. In the diagram, we can see how composing different Inputs, Outputs and Processors can produce different tasks.
Performance via Dynamic Graph Reconfiguration
DSC0002.png Distributed data processing is dynamic by nature and it is extremely difficult to statically determine optimal concurrency and data movement methods a priori. More information is available during runtime, like data samples and sizes, which may help optimize the execution plan further. We also recognize that Tez by itself cannot always have the smarts to perform these dynamic optimizations. The design of Tez includes support for pluggable vertex management modules to collect relevant information from tasks and change the dataflow graph at runtime to optimize for performance and resource usage. The diagram shows how Tez can determine an appropriate number of reducers in a MapReduce like job by observing the actual data output produced and the desired load per reduce task.
Performance via Optimal Resource Management
DSC0003.png Resources acquisition in a distributed multi-tenant environment is based on cluster capacity, load and other quotas enforced by the resource management framework like YARN. Thus resource available to the user may vary over time and over different executions of the job. It becomes paramount to be able to efficiently use all available resources to run a job as fast as possible during one instance of execution and predictably over different instances of execution. The Tez execution engine framework allows for efficient acquisition of resources from YARN along with extensive reuse of every component in the pipeline such that no operation is duplicated unnecessarily. These efficiencies are exposed to user logic, where possible, such that users may also leverage this for efficient caching and avoid work duplication. The diagram shows how Tez runs multiple containers within the same YARN container host and how users can leverage that to store their own objects that may be shared across tasks.
We hope this brief overview about the philosophy and design of Apache Tez will throw some light on the aspirations of the project and how we hope to work with the Apache Hadoop community to bring them to life. Apache Hive and Apache Pig projects have already show deep interest in integrating with Tez.
  http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing/

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-313341-1-1.html 上篇帖子: 海量图像数据论文:基于Hadoop的海量图象数据管理 下篇帖子: 原创抢鲜教程:快用Cloudera SCM Express管理你的hadoop集群吧
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表