实际上,上面的集群模式还存在两个问题:
1. 扩容问题:
因为使用了一致性哈稀进行分片,那么不同的key分布到不同的Redis-Server上,当我们需要扩容时,需要增加机器到分片列表中,这时候会使得同样的key算出来落到跟原来不同的机器上,这样如果要取某一个值,会出现取不到的情况,对于这种情况,Redis的作者提出了一种名为Pre-Sharding的方式:
Pre-Sharding方法是将每一个台物理机上,运行多个不同断口的Redis实例,假如有三个物理机,每个物理机运行三个Redis实际,那么我们的分片列表中实际有9个Redis实例,当我们需要扩容时,增加一台物理机,步骤如下:
A. 在新的物理机上运行Redis-Server;
B. 该Redis-Server从属于(slaveof)分片列表中的某一Redis-Server(假设叫RedisA);
C. 等主从复制(Replication)完成后,将客户端分片列表中RedisA的IP和端口改为新物理机上Redis-Server的IP和端口;
D. 停止RedisA。
这样相当于将某一Redis-Server转移到了一台新机器上。Prd-Sharding实际上是一种在线扩容的办法,但还是很依赖Redis本身的复制功能的,如果主库快照数据文件过大,这个复制的过程也会很久,同时会给主库带来压力。所以做这个拆分的过程最好选择为业务访问低峰时段进行。 http://blog.nosqlfan.com/html/3153.html
2. 单点故障问题:
还是用到Redis主从复制的功能,两台物理主机上分别都运行有Redis-Server,其中一个Redis-Server是另一个的从库,采用双机热备技术,客户端通过虚拟IP访问主库的物理IP,当主库宕机时,切换到从库的物理IP。只是事后修复主库时,应该将之前的从库改为主库(使用命令slaveof no one),主库变为其从库(使命令slaveof IP PORT),这样才能保证修复期间新增数据的一致性。