设为首页 收藏本站
查看: 1099|回复: 0

[经验分享] Python 性能剖分工具

[复制链接]

尚未签到

发表于 2017-4-27 10:48:55 | 显示全部楼层 |阅读模式
Python 性能剖分工具
眼看着项目即将完成,却被测试人员告知没有通过性能测试,这种情况在开发中屡见不鲜。接下来的工作就是加班加点地找出性能瓶颈,然后进行优化,再进行性能测试,如此这般周而复始直到通过性能测试。尽管丰富的工作经验有助于性能优化,但只有科学地应用工具才能在最短的时间内找出最佳优化粒度的瓶颈代码段,达到事半功倍的效果。
profile、cProfile与hotshot
Python 内置了丰富的性能优化工具来帮助我们定位性能瓶颈,如:profilecProfile hotshot。它们易于使用,而且有完备的支持文档可供参考。下面以最常用的 profile 模块为例来说明它们的使用方法,假定要剖分的脚本文件为 foo.py ,它的内容如下:
def foo():
sum = 0
for i in range(100):
sum += i
return sum
if __name__ == "__main__":
foo()
foo.py 进行性能剖分的方法之一是修改 foo.py 里的 if 程序块,引入 profile 模块:
if __name__ == "__main__":
import profile
profile.run("foo()")
然后执行 foo.py 即可完成性能剖分,剖分结果将以文本报表的形式打印到标准输出。
因为上述方法需要修改 foo.py 文件,所以我们通常更倾向于使用无需修改源文件的方法——就是在命令行中用应用 python –m 参数来执行 profile
python –m profile foo.py
除了可以使用 profile 模块外,还可以使用 cProfile 模块。cProfile C 语言实现,是剖分代价更低的剖分器,有和 profile 模块相同的接口,但只能用于2.5或以上版本。Python 另一个内置的剖分器是 hotshot,但是 hotshot 模块已经不再推荐使用,因为将来它可能会被移出标准库。
pstats
无论使用哪个剖分器,它的剖分数据都可以保存到二进制文件,如foo.prof。分析和查看剖分结果文件需要使用 pstats 模块,它极具伸缩性,可以输出形式多样的文本报表,是文本界面下不可或缺的工具。
使用 pstats 分析剖分结果很简单,几行代码就可以了:
import pstats
p = pstats.Stats("foo.prof")
p.sort_stats("time").print_stats()
运行上述脚本将输出结果为按函数内部运行时间(不计调用子函数的时间)长短排序的报表。
sort_stats() 方法是 pstats.Stats 最重要的方法之一,它用以对剖分数据进行排序。sort_stats() 接受一个字符串参数,这个字符串标识了排序的字段,常用的可选的参数及其意义如下:
‘ncalls’
被调用次数
‘cumulative’
函数运行的总时间
‘nfl’
Name/file/line
‘time’
函数内部运行时间(不计调用子函数的时间)
除了 sort_stats() 外, pstats.Stats 还有 print_callees() print_callers() 方法用以输出指定函数所调用的函数和调用过指定函数的函数。
除了编编程接口外,pstats 还提供了友好的命令行交互环境,在命令行执行 python –m pstats 就可以进入交互环境,在交互环境里可以使用 read/add 指令读入/加载剖分结果文件,stats 指令用以查看报表, callees callers 指令用以查看特定函数的被调用者和调用者。下图是 pstats 的截图,标识了它的基本使用方法:
<shapetype id="_x0000_t75" stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t" o:spt="75" coordsize="21600,21600"><stroke joinstyle="miter"></stroke><formulas><f eqn="if lineDrawn pixelLineWidth 0"></f><f eqn="sum @0 1 0"></f><f eqn="sum 0 0 @1"></f><f eqn="prod @2 1 2"></f><f eqn="prod @3 21600 pixelWidth"></f><f eqn="prod @3 21600 pixelHeight"></f><f eqn="sum @0 0 1"></f><f eqn="prod @6 1 2"></f><f eqn="prod @7 21600 pixelWidth"></f><f eqn="sum @8 21600 0"></f><f eqn="prod @7 21600 pixelHeight"></f><f eqn="sum @10 21600 0"></f></formulas><path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f"></path><lock aspectratio="t" v:ext="edit"></lock></shapetype><shape id="_x0000_i1025" style="width: 415.5pt; height: 357.75pt;" type="#_x0000_t75"><imagedata o:title="pstats" src="file:///C:%5CDOCUME~1%5CLai%5CLOCALS~1%5CTemp%5Cmsohtml1%5C01%5Cclip_image001.png"></imagedata></shape>
DSC0000.png


<!-- SiteSearch Google -->有问题不明白?请教Google大神吧!    输入您的搜索字词 提交搜索表单 Web blog.csdn.net<!-- SiteSearch Google -->

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-369890-1-1.html 上篇帖子: (转)python 笔记1 下篇帖子: python快速入门教程
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表