设为首页 收藏本站
查看: 996|回复: 0

[经验分享] Python垃圾回收(gc)拖累了程序执行性能?

[复制链接]

尚未签到

发表于 2017-5-4 09:40:48 | 显示全部楼层 |阅读模式
起因
  
前段时间,在做文本处理的实验时,需要预加载大量的原始数据(100W),在Python中使用的字典(dict)类型负责保存这些数据,很快就开发完成
了一个Demo版,然而程序执行的效率不是那么令人满意,通过使用Python中的profile发现,影响程序执行性能的关键语句就那么几条(用
dict保存加载后原始数据,这是个循环遍历。)


解决问题
  
既然找到了问题源,于是就勒起衣袖开始动手尝试使用各种解决方案替代效率不佳的,经过多次的反复尝试,调优的效果不太明显,最后一个idea:考虑Python垃圾回收机制的影响了,最后也证明了这个想法的靠谱程度,本文后续部分将分享调优的过程与测试结果。


浅谈Python垃圾回收机制
  
在使用C语言开发时代,我们的开发效率(生产力的问题)受牵制于内存释放、泄露等问题,于是普遍的口号---“指针好难学”。时过境迁,当今的流行的语言都配套了内存自动回收机制,从而使我们有更多的精力去纠结于业务上处理。

常用的垃圾回收(GC)算法有这几种引用计数(Reference
Count)、Mark-Sweep、Copying、分代收集。在Python中使用的是前者引用计数,工作原理:为每个内存对象维护一个引用计数。因
此得知每次内存对象的创建与销毁都必须修改引用计数,从而在大量的对象创建时,需要大量的执行修改引用计数操作(footprint),对于程序执行过程
中,额外的性能开销是令人可怕的,由于该算法的特性问题,因此无法避免了,那么我们只能成垃圾回收时机着手了。

谈到这里因此不得不谈谈垃圾回收的时机,根据官方的描叙,Python中,有2中方式将会触发垃圾回收:

1、用户显示调用gc.collect()

2、每次Python为新对象分配内存时,检查threshold阀值,当对象数量超过threshold设置的阀值就开始进行垃圾回收。


调优之前
  
为了便于描叙如前文所述的加载大量原始数据的问题,使用了虚假的数据,这部分程序片段完成的功能倒没有发生变化,以下是调优之前的程序片段:

data = range(1,5000000)
wdict = dict(zip(data,data))
  使用time python test.py运行,我们可以看到以下结果(机器的差异,显示的结果也将不同):

real    0m39.066s
user    0m26.422s
sys     0m12.313s
  如果使用linux下的top命令,您将动态的看到内存的使用情况,该程序运行后将缓慢的吞噬内存,由于程序运行时的内存对象都是有效的,因此垃圾回收触
发时,无法释放这部分内存,而垃圾回收程序却在做无用功(达到threshold阀值),显而易见,程序的执行性能将大打折扣。那么我们的调优手段也就很
容易了,在程序片段运行的这段时间内禁止进行垃圾回收。


调优之后
  
以下是调优之后的程序片段(禁止程序片段的垃圾回收):

import gc
gc.disable()
data = range(1,5000000)
wdict = dict(zip(data,data))
gc.enable()
  使用time python test.py运行,我们可以看到以下结果(机器的差异,显示的结果也将不同):

real    0m2.760s
user    0m1.208s
sys     0m1.532s
  通过上面的运行结果对比,显而易见,调优后的程序性能明显大幅提升,如果使用Linux下的top命令,您将动态的看到内存的使用情况也是不同的,该程序运行后迅速的吞噬内存,对比调优之前的程序片段,减少了垃圾回收的频频触发。


总结
  
通过这次的调优体验,发现Python垃圾回收频频触发将会影响程序执行的性能,因此,正如很多同学所说,Python程序的执行速度慢是不是有垃圾回收机制的一份功劳呢?

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-372815-1-1.html 上篇帖子: 理解Python命名机制(单双下划线开头) 下篇帖子: 如何提高python程序的可维护性?
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表