设为首页 收藏本站
查看: 784|回复: 0

[经验分享] 轩脉刃de刀光剑影-正确的时间经历正确的事情

[复制链接]

尚未签到

发表于 2017-12-16 23:17:47 | 显示全部楼层 |阅读模式
初识hadoop
概念
  hadoop首先是大数据领域。大数据领域至少是分布式的,分布式数据必然是有一定规模了。如果数据只有几个G或者更小就没有什么意义了。
  hadoop最核心的概念就是HDFS和MapReduce。hadoop的源码在github上也有对应的开源:https://github.com/apache/hadoop
hdfs
  hdfs是一个分布式文件系统。我们有多台廉价的机器,需要存储非常大量的数据。我们就需要使用一个文件系统,把数据分成块,分别放在不同的机器上,并且可以使用像hdfs://A/B/C 之类的路径进行访问。
hdfs和nfs有什么区别?
  linux的nfs (Network File system)是网络文件系统协议。为的是不同机器上的文件可以互相访问。比如B机器把A机器上的一个分区\home\a挂载为自己机器上的\home\b,这样在B机器上就可以像访问本地机器上的文件一样访问A机器上的文件了。
DSC0000.png

  而hdfs (Hadoop Distributed File System)是hadoop的分布式文件系统。它是通过网络和机器节点把多个机器上的文件统一成一个文件系统的机制。HDFS不止是解决多个机器之间的文件访问问题。还解决了数据备份,切割之类的问题。
  一个文件,在nfs上必然完完整整存储在一个节点的一个硬盘上。但是在hdfs中,一个文件可能会被切割为多个小文件,存储在不同的机器上。甚至于,每个小文件还会有一份备份以防止数据丢失。
hdfs架构
DSC0001.png

  hdfs基本还是主从结构,有一个namenode,和多个datanode。所有对文件的访问都经过namenode,namenode中存储文件访问路径和实际存储路径的映射关系,就是元数据。然后通过了namenode,就访问datanode获取实际的文件。
mapreduce
  mapreduce是一个计算框架,它分为map部分和reduce。map阶段相当于把数据进行整理的阶段,各种相同的数据都整理在一起,reduce相当于是统计阶段,统计出每个数据需要的数据。其中,map整理完的数据,哪个reduce处理哪个整理完的数据,这个过程叫做shuffle。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-424869-1-1.html 上篇帖子: Hadoop搭建超级详解 下篇帖子: Hadoop:eclipse配置hadoop-eclipse
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表