|
马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动
马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作
马士兵hadoop第三课:java开发hdfs
马士兵hadoop第四课:Yarn和Map/Reduce配置启动和原理讲解
马士兵hadoop第五课:java开发Map/Reduce
配置系统环境变量HADOOP_HOME,指向hadoop安装目录(如果你不想招惹不必要的麻烦,不要在目录中包含空格或者中文字符)
把HADOOP_HOME/bin加到PATH环境变量(非必要,只是为了方便)
如果是在windows下开发,需要添加windows的库文件
把盘中共享的bin目录覆盖HADOOP_HOME/bin
如果还是不行,把其中的hadoop.dll复制到c:\windows\system32目录下,可能需要重启机器
建立新项目,引入hadoop需要的jar文件
代码WordMapper:
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public> @Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)throws IOException, InterruptedException { String line
= value.toString(); String[] words
= line.split(" ");for(String word : words) { context.write(
new Text(word), new IntWritable(1)); }
}
}
代码WordReducer:
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public> @Override
protected void reduce(Text key, Iterable<IntWritable> values, Reducer
<Text, IntWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {long count = 0;for(IntWritable v : values) { count
+= v.get(); }
context.write(key,
new LongWritable(count)); }
}
代码Test:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public>public static void main(String[] args) throws Exception { Configuration conf
= new Configuration(); Job job
= Job.getInstance(conf); job.setMapperClass(WordMapper.
class); job.setReducerClass(WordReducer.
class); job.setMapOutputKeyClass(Text.
class); job.setMapOutputValueClass(IntWritable.
class); job.setOutputKeyClass(Text.
class); job.setOutputValueClass(LongWritable.
class); FileInputFormat.setInputPaths(job,
"c:/bigdata/hadoop/test/test.txt"); FileOutputFormat.setOutputPath(job,
new Path("c:/bigdata/hadoop/test/out/")); job.waitForCompletion(
true); }
}
把hdfs中的文件拉到本地来运行
FileInputFormat.setInputPaths(job, "hdfs://master:9000/wcinput/");
FileOutputFormat.setOutputPath(job,
new Path("hdfs://master:9000/wcoutput2/"));
注意这里是把hdfs文件拉到本地来运行,如果观察输出的话会观察到jobID带有local字样
同时这样的运行方式是不需要yarn的(自己停掉yarn服务做实验)
在远程服务器执行
conf.set("fs.defaultFS", "hdfs://master:9000/");
conf.set(
"mapreduce.job.jar", "target/wc.jar");
conf.set(
"mapreduce.framework.name", "yarn");
conf.set(
"yarn.resourcemanager.hostname", "master");
conf.set(
"mapreduce.app-submission.cross-platform", "true");
FileInputFormat.setInputPaths(job,
"/wcinput/");
FileOutputFormat.setOutputPath(job,
new Path("/wcoutput3/"));
如果遇到权限问题,配置执行时的虚拟机参数-DHADOOP_USER_NAME=root
也可以将hadoop的四个配置文件拿下来放到src根目录下,就不需要进行手工配置了,默认到classpath目录寻找
或者将配置文件放到别的地方,使用conf.addResource(.class.getClassLoader.getResourceAsStream)方式添加,不推荐使用绝对路径的方式 |
|
|