设为首页 收藏本站
查看: 1495|回复: 0

[经验分享] hadoop中map和reduce的数量设置

[复制链接]

尚未签到

发表于 2017-12-18 07:07:24 | 显示全部楼层 |阅读模式
  hadoop中map和reduce的数量设置,有以下几种方式来设置
  一、mapred-default.xml
  

  这个文件包含主要的你的站点定制的Hadoop。尽管文件名以mapred开头,通过它可以控制用户maps和 reduces的默认的设置。
  
下面是一些有用变量:
  


名字  


含义  

dfs.block.size  


分布式文件系统中每个数据块的大小 (bytes)io.sort.factor  


合并排序时每层输入的文件数  

io.sort.mb  


排序输入的reduce时缓存大小  


io.file.buffer.size
用于缓存输入输出文件的字节数  


mapred.reduce.parallel.copies
从map到reduce输出的线程数  

dfs.replication  


每个DFS块的备份数  


mapred.child.java.opts
传给子任务jvm的选项  


mapred.min.split.size
在一个map输入分裂的最小字节数  


mapred.output.compress
Reduce的输出是否被压缩  
二、不再使用模式设置,通过代码控制:
  

  
Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定。在默认情况下,最终input占据了多少block,就应该启动多少个Mapper。如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃。这些逻辑确实是正确的,但都是在默认情况下的逻辑。其实如果进行一些客户化的设置,就可以控制了。
  
在Hadoop中,设置Map task的数量不像设置Reduce task数量那样直接,即:不能够通过API直接精确的告诉Hadoop应该启动多少个Map task。
  
你也许奇怪了,在API中不是提供了接口org.apache.hadoop.mapred.JobConf.setNumMapTasks(int
n)吗?这个值难道不可以设置Map task的数量吗?这个API的确没错,在文档上解释”Note: This is only a hint tothe
framework.“,即这个值对Hadoop的框架来说仅仅是个提示,不起决定性的作用。也就是说,即便你设置了,也不一定得到你想要的效果。
  
1. InputFormat介绍
  

  
在具体设置Map task数量之前,非常有必要了解一下与Map-Reduce输入相关的基础知识。
  

  
这个接口(org.apache.hadoop.mapred.InputFormat)描述了Map-Reduce
job的输入规格说明(input-specification),它将所有的输入文件分割成逻辑上的InputSplit,每一个InputSplit将会分给一个单独的mapper;它还提供RecordReader的具体实现,这个Reader从逻辑的InputSplit上获取inputrecords并传给Mapper处理。
  

  
InputFormat有多种具体实现,诸如FileInputFormat(处理基于文件的输入的基础抽象类),
DBInputFormat(处理基于数据库的输入,数据来自于一个能用SQL查询的表),KeyValueTextInputFormat(特殊的FineInputFormat,处理PlainText
File,文件由回车或者回车换行符分割成行,每一行由key.value.separator.in.input.line分割成Key和Value),CompositeInputFormat,DelegatingInputFormat等。在绝大多数应用场景中都会使用FileInputFormat及其子类型。
  

  
通过以上的简单介绍,我们知道InputFormat决定着InputSplit,每个InputSplit会分配给一个单独的Mapper,因此InputFormat决定了具体的Map task数量。
  

  
2. FileInputFormat中影响Map数量的因素
  
在日常使用中,FileInputFormat是最常用的InputFormat,它有很多具体的实现。以下分析的影响Map数量的因素仅对FileInputFormat及其子类有效,其他非FileInputFormat可以去查看相应的getSplits(JobConf job, int numSplits) 具体实现即可。
  请看如下代码段(摘抄自org.apache.hadoop.mapred.FileInputFormat.getSplits)
  

    long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);long minSize = Math.max(job.getLong("mapred.min.split.size", 1), minSplitSize);  

for (FileStatus file: files) {  Path path
= file.getPath();  FileSystem fs
= path.getFileSystem(job);if ((length != 0) && isSplitable(fs, path)) {long blockSize = file.getBlockSize();long splitSize = computeSplitSize(goalSize, minSize, blockSize);long bytesRemaining = length;while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {  String[] splitHosts
= getSplitHosts(blkLocations,length-bytesRemaining, splitSize, clusterMap);  splits.add(
new FileSplit(path, length-bytesRemaining, splitSize, splitHosts));  bytesRemaining
-= splitSize;  }
  

if (bytesRemaining != 0) {  splits.add(
new FileSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-1].getHosts()));  }
  }
else if (length != 0) {  String[] splitHosts
= getSplitHosts(blkLocations,0,length,clusterMap);  splits.add(
new FileSplit(path, 0, length, splitHosts));  }
else {//Create empty hosts array for zero length files  splits.add(new FileSplit(path, 0, length, new String[0]));
  }
  }
  

  return splits.toArray(new FileSplit[splits.size()]);
  

  protected long computeSplitSize(long goalSize, long minSize, long blockSize) {
  return Math.max(minSize, Math.min(goalSize, blockSize));
  }
  


  totalSize:是整个Map-Reduce job所有输入的总大小。numSplits:来自job.getNumMapTasks(),即在job启动时用org.apache.hadoop.mapred.JobConf.setNumMapTasks(int n)设置的值,给M-R框架的Map数量的提示。goalSize:是输入总大小与提示Map task数量的比值,即期望每个Mapper处理多少的数据,仅仅是期望,具体处理的数据数由下面的computeSplitSize决定。minSplitSize:默认为1,可由子类复写函数protected void setMinSplitSize(long minSplitSize) 重新设置。一般情况下,都为1,特殊情况除外。minSize:取的1和mapred.min.split.size中较大的一个。blockSize:HDFS的块大小,默认为64M,一般大的HDFS都设置成128M。splitSize:就是最终每个Split的大小,那么Map的数量基本上就是totalSize/splitSize。接下来看看computeSplitSize的逻辑:首先在goalSize(期望每个Mapper处理的数据量)和HDFS的block>  

  
3. 如何调整Map的数量有了2的分析,下面调整Map的数量就很容易了。
  

  
3.1 减小Map-Reduce job 启动时创建的Mapper数量当处理大批量的大数据时,一种常见的情况是job启动的mapper数量太多而超出了系统限制,导致Hadoop抛出异常终止执行。解决这种异常的思路是减少mapper的数量。具体如下:
  
3.1.1 输入文件size巨大,但不是小文件这种情况可以通过增大每个mapper的input
size,即增大minSize或者增大blockSize来减少所需的mapper的数量。增大blockSize通常不可行,因为当HDFS被hadoopnamenode
-format之后,blockSize就已经确定了(由格式化时dfs.block.size决定),如果要更改blockSize,需要重新格式化HDFS,这样当然会丢失已有的数据。所以通常情况下只能通过增大minSize,即增大mapred.min.split.size的值。
  

  
3.1.2
输入文件数量巨大,且都是小文件所谓小文件,就是单个文件的size小于blockSize。这种情况通过增大mapred.min.split.size不可行,需要使用FileInputFormat衍生的CombineFileInputFormat将多个inputpath合并成一个InputSplit送给mapper处理,从而减少mapper的数量。具体细节稍后会更新并展开。
  

  
3.2 增加Map-Reduce job 启动时创建的Mapper数量增加mapper的数量,可以通过减小每个mapper的输入做到,即减小blockSize或者减小mapred.min.split.size的值。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-425239-1-1.html 上篇帖子: hadoop面试题及答案解析 下篇帖子: Hadoop核心架构HDFS+MapReduce+Hbase+Hive内部机理详解
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表