设为首页 收藏本站
查看: 654|回复: 0

[经验分享] windows OS 内存 资源--学习笔记

[复制链接]

尚未签到

发表于 2018-6-16 07:24:39 | 显示全部楼层 |阅读模式
  64OS32OS各资源最大值对比
  In the following table, the increased maximum resources of computers that are based on 64-bit versions of Windows and the 64-bit Intel processor are compared with existing 32-bit resource maximums.
Architectural   component

64-bit   Windows

32-bit   Windows

  Virtual memory
  16 terabytes
  4 GB
  Paging file>
  256 terabytes
  16 terabytes
  Hyperspace
  8 GB
  4 MB
  Paged pool
  128 GB
  470 MB
  Non-paged pool
  128 GB
  256 MB
  System cache
  1 terabyte
  1 GB
  System PTEs
  128 GB
  660 MB
  
  
  各资源的说明:
  Virtual memory
  This is a method of extending the available physical memory on a computer.
  In a virtual memory system, the operating system creates a pagefile, or swapfile, and divides memory into units called pages. Recently referenced pages are located in physical memory, or RAM.
  If a page of memory is not referenced for a while, it is written to the pagefile. This is called "swapping" or "paging out" memory. If that piece of memory is then later referenced by a program, the operating system reads the memory page back from the pagefile into physical memory, also called "swapping" or "paging in" memory.

  The total amount of memory that is available to programs is the amount of physical memory in the computer in addition to the>  Applications that are compiled with the /LARGEADDRESSAWARE option, as would be required to take advantage of the /3GB switch in 32-bit Windows, will automatically be able to address 4 GB of virtual memory without any boot time switches or changes to x64 Windows. Plus, of course, the operating system does not have to share that 4 GB of space. Therefore, it is not constrained at all.
  Paging file
  This is a disk file that the computer uses to increase the amount of physical storage for virtual memory.
  Hyperspace
  This is a special region that is used to map the process working set list and to temporarily map other physical pages for such operations as zeroing a page on the free list (when the zero list is empty and the zero page is needed), invalidating page table entries in other page tables (such as when a page is removed from the standby list), and in regards to process creation, setting up the address space of a new process.
  Paged pool
  This is a region of virtual memory in system space that can be paged in and out of the working set of the system process. Paged pool is created during system initialization and is used by Kernel-mode components to allocate system memory. Uniproccessor systems have two paged pools, and multiprocessor systems have four. Having more than one paged pool reduces the frequency of system code blocking on simultaneous calls to pool routines.
  Non-paged pool
  This is a memory pool that consists of ranges of system virtual addresses that are guaranteed to be resident in physical memory at all times and thus can be accessed from any address space without incurring paging input/output (I/O). Non-paged pool is created during system initialization and is used by Kernel-mode components to allocate system memory.
  System cache
  These are pages that are used to map open files in the system cache.
  System PTEs
  A pool of system Page Table Entries (PTEs) that is used to map system pages such as I/O space, Kernel stacks, and memory descriptor lists. 64-bit programs use a 16-terabyte tuning model (8 terabytes User and 8 terabytes Kernel). 32-bit programs still use the 4-GB tuning model (2 GB User and 2 GB Kernel). This means that 32-bit processes that run on 64-bit versions of Windows run in a 4-GB tuning model (2 GB User and 2GB Kernel). 64-bit versions of Windows do not support the use of the /3GBswitch in the boot options. Theoretically, a 64-bit pointer could address up to 16 exabytes. 64-bit versions of Windows have currently implemented up to 16 terabytes of address space.
  以上文献来至: http://support.microsoft.com/kb/294418/zh-cn

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-524370-1-1.html 上篇帖子: Linux与windows之间-文件传输工具RZSZ 下篇帖子: windows系统下tomcat安装
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表