设为首页 收藏本站
查看: 545|回复: 0

[经验分享] KNN算法的Python实现

[复制链接]
累计签到:1 天
连续签到:1 天
发表于 2018-8-11 11:31:23 | 显示全部楼层 |阅读模式
# Author :CWX  
# Date :2015/9/1
  
# Function: A classifier which using KNN algorithm
  

  
import math
  

  
attributes = {"age":0,"workclass":1,"fnlwg":2,"education":3,"education-num":4,
  "marital-status":5,"occupation":6,"relationship":7,"race":8,
  "sex":9,"capital-gain":10,"capital-loss":11,"hours-per-week":12,
  "native-country":13,"salary":14
  }
  

  
def read_txt(filename):
  
#read data and convert it into list
  items = []
  fp = open(filename,'r')
  lines = fp.readlines()
  for line in lines:
  line = line.strip('\n')
  items.append(line)
  fp.close()
  

  i = 0
  b = []
  for i in range(len(items)):
  b.append(items.split(','))
  return b
  

  
def computeNa(items):
  
# detect missing value in list and handle it
  
# items - an whole list
  for item in items[:]:
  if item.count(' ?') > 0:
  items.remove(item)
  # if item.count(' ?') >= -1:
  # items.remove(item)
  return items
  

  
def disCal(lst1,lst2,type):
  
# calculting distance between lst1 and lst2
  distance = 0;
  if type == "Manhattan" or type == "manhattan":
  for i in range(len(lst2) - 1):
  distance += abs(lst1 - lst2)
  elif type == "Elucildean" or type == "elucildean":
  for i in range(len(lst2) - 1):
  distance += math.sqrt((lst1 - lst2)**2)
  else:
  print "Error in type name"
  distance = -1
  return distance
  

  
def computeContinous(datalist,attribute):
  
# compute continous attributes in list
  min_val = int(datalist[0][attribute])
  max_val = int(datalist[0][attribute])
  for items in datalist:
  if int(items[attribute]) < min_val:
  min_val = int(items[attribute])
  elif int(items[attribute]) > max_val:
  max_val = int(items[attribute])
  for items in datalist[:]:
  items[attribute] = (int(items[attribute]) - min_val) / float(max_val - min_val)
  return datalist
  

  
def computeOrdinal(datalist,attribute,level):
  
# compute ordinal attribute in datalist
  level_dict = {}
  for i in range(len(level)):
  level_dict[level] = float(i) / (len(level) - 1)
  
#level_dict[level] = i
  for items in datalist[:]:
  items[attribute] = level_dict[items[attribute]]
  return datalist
  

  
def KnnAlgorithm(dataTrain,sample,attribute,k):
  mergeData = dataTrain
  mergeData.append(sample)
  data = preProcessing(mergeData)
  distance = []
  for i in range(len(data)-2):
  distance.append(disCal(data,data[len(data)-1],"Elucildean"))
  copy_dis = distance[:] # notice : not copy_dis = distance ,if it will be wrong
  distance.sort()
  

  class_dict = {"Yes":0,"No":0}
  for i in range(k):
  index = copy_dis.index(distance)
  if data[index][attribute] == " >50K":
  class_dict["Yes"] += 1
  else:
  class_dict["No"] += 1
  if  class_dict["Yes"] > class_dict["No"]:
  print "sample's salary >50K"
  else:
  print "sample's salary <=50K"
  

  
def preProcessing(datalist):
  b = computeNa(datalist)
  

  b = computeContinous(b,attributes["age"])
  

  workclass_level = [" Private"," Self-emp-not-inc"," Self-emp-inc"," Federal-gov"," Local-gov"," State-gov"," Without-pay"," Never-worked"]
  b = computeOrdinal(b,attributes["workclass"],workclass_level)
  

  b = computeContinous(b,attributes["fnlwg"])
  

  education_level =[" Bachelors"," Some-college"," 11th"," HS-grad"," Prof-school",
  " Assoc-acdm"," Assoc-voc"," 9th"," 7th-8th"," 12th"," Masters"," 1st-4th"," 10th"," Doctorate"," 5th-6th"," Preschool"]
  b = computeOrdinal(b,attributes["education"],education_level)
  

  b = computeContinous(b,attributes["education-num"])
  

  marital_status_level = [" Married-civ-spouse"," Divorced"," Never-married"," Separated"," Widowed"," Married-spouse-absent"," Married-AF-spouse"]
  b = computeOrdinal(b,attributes["marital-status"],marital_status_level)
  

  occupation_level  = [" Tech-support"," Craft-repair"," Other-service"," Sales"," Exec-managerial"," Prof-specialty"," Handlers-cleaners",
  " Machine-op-inspct"," Adm-clerical"," Farming-fishing"," Transport-moving"," Priv-house-serv"," Protective-serv"," Armed-Forces"]
  b = computeOrdinal(b,attributes["occupation"],occupation_level)
  

  relationship_level = [" Wife"," Own-child"," Husband"," Not-in-family"," Other-relative"," Unmarried"]
  b = computeOrdinal(b,attributes["relationship"],relationship_level)
  

  race_level = [" White"," Asian-Pac-Islander"," Amer-Indian-Eskimo"," Other"," Black"]
  b = computeOrdinal(b,attributes["race"],race_level)
  

  sex_level = [" Female", " Male"]
  b = computeOrdinal(b,attributes["sex"],sex_level)
  

  b = computeContinous(b,attributes["capital-gain"])
  

  b = computeContinous(b,attributes["capital-loss"])
  

  b = computeContinous(b,attributes["hours-per-week"])
  

  native_country_level = [" United-States"," Cambodia"," England"," Puerto-Rico"," Canada"," Germany"," Outlying-US(Guam-USVI-etc)"," India",
  " Japan"," Greece"," South"," China"," Cuba"," Iran"," Honduras"," Philippines"," Italy"," Poland"," Jamaica"," Vietnam"," Mexico"," Portugal",
  " Ireland"," France"," Dominican-Republic"," Laos"," Ecuador"," Taiwan"," Haiti"," Columbia"," Hungary"," Guatemala"," Nicaragua"," Scotland",
  " Thailand"," Yugoslavia"," El-Salvador"," Trinadad&Tobago"," Peru"," Hong"," Holand-Netherlands"]
  b = computeOrdinal(b,attributes["native-country"],native_country_level)
  return b
  

  
def assessment(dataTrain,dataTest,atrribute,k):
  mergeData = computeNa(dataTrain)
  len_train = len(mergeData)
  mergeData.extend(computeNa(dataTest))
  data = preProcessing(mergeData)
  len_test = len(data) - len_train
  res_dict = {"correct":0,"wrong":0}
  for i in range(len_test):
  distance = []
  class_dict = {"Yes":0,"No":0}
  for j in range(len_train):
  distance.append(disCal(data[j],data[i+len_train],"Elucildean"))
  copy_dis = distance[:]
  distance.sort()
  for m in range(k):
  index = copy_dis.index(distance[m])
  if data[index][atrribute] == " >50K":
  class_dict["Yes"] += 1
  else:
  class_dict["No"] += 1
  if class_dict["Yes"] > class_dict["No"] and mergeData[i+len_train][atrribute] == " >50K.": #Attention : in train data in the end of lines there is a "."
  res_dict["correct"]  += 1
  elif mergeData[i+len_train][atrribute] == " <=50K." and class_dict["Yes"] < class_dict["No"]:
  res_dict["correct"]  += 1
  else:
  res_dict["wrong"] += 1
  correct_ratio = float(res_dict["correct"]) / (res_dict["correct"] + res_dict["wrong"])
  print "correct_ratio = ",correct_ratio
  
filename = "H:\BaiduYunDownload\AdultDatasets\Adult_data.txt"
  
#sample = [" 80"," Private"," 226802"," 11th"," 7"," Never-married"," Machine-op-inspct"," Own-child"," Black"," Male"," 0"," 0"," 40"," United-States"," <=50K"]
  
sample = [" 65"," Private"," 184454"," HS-grad"," 9"," Married-civ-spouse"," Machine-op-inspct"," Husband"," White"," Male"," 6418"," 0"," 40"," United-States"," >50K"]
  
# this samples salary <=50K#
  
# filename = "D:\MyDesktop-HnH\data.txt"
  
a = read_txt(filename)
  
print len(a)
  

  
k = 3
  
#KnnAlgorithm(a,sample,attributes["salary"],k)
  

  
trainName = "H:\BaiduYunDownload\AdultDatasets\Adult_test.txt"
  
trainData = read_txt(trainName)
  
#preProcessing(trainData)
  
assessment(a,trainData,attributes["salary"],k)

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-550092-1-1.html 上篇帖子: python管理kvm-muzinan的技术博客 下篇帖子: Python库——SocketServer
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表