在1960年代,计算机制造商们曾经估计,如果将所有的用户计入,他们制造的计算机有25%的时间用于排序。实际上,有很多计算机花了超过一半的计算时间在排序上。通过这样的评估结果,我们可以得出结论,可能(i)确实有很多非常重要的和排序相关的应用,或者(ii)很多人在进行一些不必要的排序计算,再或者(iii)低效的排序算法被广泛采用造成了计算的浪费。
来源《The Art of Computer Programming》,作者Donald Knuth
def insertion_sort(sort_list):
iter_len = len(sort_list)
if iter_len < 2:
return sort_list
for i in range(1, iter_len):
key = sort_list
j = i - 1
while j>=0 and sort_list[j]>key:
sort_list[j+1] = sort_list[j]
j -= 1
sort_list[j+1] = key
return sort_list
冒泡排序:
def bubble_sort(sort_list):
iter_len = len(sort_list)
if iter_len < 2:
return sort_list
for i in range(iter_len-1):
for j in range(iter_len-i-1):
if sort_list[j] > sort_list[j+1]:
sort_list[j], sort_list[j+1] = sort_list[j+1], sort_list[j]
return sort_list
选择排序:
def selection_sort(sort_list):
iter_len = len(sort_list)
if iter_len < 2:
return sort_list
for i in range(iter_len-1):
smallest = sort_list
location = i
for j in range(i, iter_len):
if sort_list[j] < smallest:
smallest = sort_list[j]
location = j
if i != location:
sort_list, sort_list[location] = sort_list[location], sort_list
return sort_list
不了解Python的同学可能会觉得奇怪,没错,这是交换两个数的做法,通常在其他语言中如果要交换a与b的值,常常需要一个中间变量temp,首先把a赋给temp,然后把b赋给a,最后再把temp赋给b。但是在python中你就可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。
平均时间复杂度为O(nlogn)的算法有:归并排序,堆排序和快速排序。
归并排序。对于一个子序列,分成两份,比较两份的第一个元素,小者弹出,然后重复这个过程。对于待排序列,以中间值分成左右两个序列,然后对于各子序列再递归调用。源代码如下,由于有工具函数,所以写成了callable的类:
class merge_sort(object):
def _merge(self, alist, p, q, r):
left = alist[p:q+1]
right = alist[q+1:r+1]
for i in range(p, r+1):
if len(left)>0 and len(right)>0:
if left[0]