im = Image.open("randomimage/randomImage11.jpg")
im = ImageEnhance.Sharpness(im).enhance(3)
参数为3是经过实验之后感觉比较理想的值,太强不好,太弱也不好
2.做完预处理之后,就是去背景噪声了.背景噪声指的是背景中各种明暗变换的色块,肉眼也许不会注意到这个.但是它的存在会给识别带来影响.我最初的做法是将图像转换为只有黑白两色,这样自然就将噪声转换成了噪点.
效果如图
但我希望能去掉噪点,成为这样
def check(j,i):
try:
if pix[j,i] == 0 and matrix[j] != -1:
return True
else:
return False
except:
return False
def juli(r,s):
return abs(r[0]-s[0])+abs(r[1]-s[1])+abs(r[2]-s[2])
for i in range(w):
for j in range(h):
r = [0,0,0]
s = [0,0,0]
if pix[j,i] == 0:
if check(j-1,i):
r[0],r[1],r[2] = im2.getpixel((j,i))
s[0],s[1],s[2] = im2.getpixel((j-1,i))
print r
print s
print "-"*55
if juli(r,s)