设为首页 收藏本站
查看: 949|回复: 0

[经验分享] hadoop基础概念之Hadoop核心组件

[复制链接]

尚未签到

发表于 2018-10-29 10:39:03 | 显示全部楼层 |阅读模式
  认知和学习Hadoop,我们必须得了解Hadoop的构成,我根据自己的经验通过Hadoop构件、大数据处理流程,Hadoop核心三个方面进行一下介绍:

  •   Hadoop组件
DSC0000.png

  由图我们可以看到Hadoop组件由底层的Hadoop核心构件以及上层的Hadoop生态系统共同集成,而上层的生态系统都是基于下层的存储和计算来完成的。
  首先我们来了解一下核心构件:Mapreduce和HDFS。核心组件的产生都是基于Google的思想来的,Google的GFS带来了我们现在所认识的HDFS,Mapreduce带来了现在Mapreduce。因为Google有bigtable的概念,就是通过一个表格去存储所有的网页数据,从而也带来了Hbase,但Hbase只是这种架构思想,架构并不完全一样。
  而位于上层的生态就是围绕Hadoop核心构件进行数据集成,数据挖掘,数据安全,数据管理以及用户体验等。

  •   大数据处理:
DSC0001.png

  以上的流程符合大数据所有的应用场景。那么大数据处理,首先必须有各种的数据源,这个数据源包含了所有传统的结构化的数据,服务器的认证以及非结构化的文本(如PDF及CSV)。之前做过一个检察院的项目,大量的案例及文书都是以PDF和CSV的形式存在的,加入到Hadoop统一进行结构化和建模,进行全民索引,大大提高了效率。
  接着就是数据存储层,数据存储层可以选择HDFS,也可以选择HBase。它们两个如何来更好的选择呢?HDFS一般是大量数据集的时候用比较好,因为HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。而HBase更多的是利用它的随机写,随机访问的海量数据的一个性能。
  然后就是数据处理工具,基本的就是spark和mapreduce,更高级的就是hive和pig,有机会我会做详细的分析。在这些数据处理工具的之后,我们要跟BI和现有的、传统的数据进行集成,这时我们可以使用Impala,进行及时查询。首先我们要提前建好Q,算出维度、指标,通过Impala钻去,切片、切块,速度很快。search就是权威索引,之前工作都做完后,可以通过搜索去查找到需要的信息。
  大数据处理都是需要这些组件来发挥作用,只是组件所处的阶段不一样而已,下面来介绍一下核心的组件。

  •   Hadoop核心
   DSC0002.png
  这里主要强调YARN:我们都知道大家使用资源都是一个共用集群资源,在使用资源的过程中就需要进行资源控制,而YARN就可以起到控制和使用资源多少的一个作用。
  以上就是给大家介绍的Hadoop的组件,至于每一个组件的作用,后续我也会给大家做一个知识分享。建议对大数据感兴趣的同学自己平时多学习和了解,我平常喜欢关注大数据cn大数据时代学习中心这些微信公众号,里面介绍的一些知识很不错,可以看一下。另外自己可以多看一些这方面的书籍,不断提升和完善自己的知识架构!


运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-627889-1-1.html 上篇帖子: 《写给大忙人的hadoop2》读书笔记(一)大数据定义 下篇帖子: hadoop部署
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表