设为首页 收藏本站
查看: 1681|回复: 0

[经验分享] Hadoop虽然强大,但不是万能的

[复制链接]

尚未签到

发表于 2018-10-31 10:06:09 | 显示全部楼层 |阅读模式
  在下面这几种场景就不适合使用Hadoop:
  1、低延迟的数据访问
  Hadoop并不适用于需要实时查询和低延迟的数据访问。数据库通过索引记录可以降低延迟和快速响应,这一点单纯的用Hadoop是没有办法代替的。但是如果你真的想要取代一个实时数据库,可以尝试一下HBase来实现数据库实时读写。
  2、结构化数据
  Hadoop不适用于结构化数据,却非常适用于半结构化和非结构化数据。Hadoop和RDBMS不同,一般采用分布式存储,因此在查询处理的时候将会面临延迟问题。
  3、数据量并不大的时候
  Hadoop一般适用于多大的数据量呢?答案是:TB 或者PB。当你的数据只有几十GB时,使用Hadoop是没有任何好处的。按照企业的需求有选择性的的使用Hadoop,不要盲目追随潮流。Hadoop很强大。但企业在使用Hadoop或者大数据之前,首先要明确自己的目标,再确定是否选对了工具。
DSC0000.jpg

  4、大量的小文件

  小文件指的是那些size比HDFS的block>  5、太多的写入和文件更新
  HDFS是采用的一些多读方式。当有太多文件更新需求,Hadoop没有办法支持。
  6、MapReduce可能不是最好的选择
  MapReduce是一个简单的并行编程模型。是大数据并行计算的利器,但很多的计算任务、工作及算法从本质上来说就是不适合使用MapReduce框架的。
  如果你让数据共享在MapReduce,你可以这样做:
  迭代:运行多个 MapReduce jobs ,前一个 MapReduce 的输出结果,作为下一个 MapReduce 的输入。
  共享状态信息:但不要分享信息在内存中,由于每个MapReduce的工作是在单个JVM上运行。
  原文链接:http://www.36dsj.com/archives/5926


运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-628830-1-1.html 上篇帖子: hadoop之MapReduce框架JobTracker端心跳机制分析(源码分析第七篇) 下篇帖子: CentOS6.4+hadoop-0.20.2安装实录
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表