人工智能发展的今天,现在很多企业也都在学习python技术开发,但是真正会的却不是很多,那么对于小白的话该如何学习python呢?下面小猿圈Python讲师为你讲解使用sklearn库实现各种分类算法,希望对于学习python开发的你有一定的帮助。
KNN from sklearn.neighbors import KNeighborsClassifier import numpy as np def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据 model = KNeighborsClassifier(n_neighbors=10)#默认为5 model.fit(X,y) predicted = model.predict(XX) return predicted SVM from sklearn.svm import SVC def SVM(X,y,XX): model = SVC(c=5.0) model.fit(X,y) predicted = model.predict(XX) return predicted SVM Classifier using cross validation def svm_cross_validation(train_x, train_y): from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC model = SVC(kernel='rbf', probability=True) param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]} grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1) grid_search.fit(train_x, train_y) best_parameters = grid_search.best_estimator_.get_params() for para, val in list(best_parameters.items()): print(para, val) model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True) model.fit(train_x, train_y) return model LR from sklearn.linear_model import LogisticRegression def LR(X,y,XX): model = LogisticRegression() model.fit(X,y) predicted = model.predict(XX) return predicted 决策树(CART) from sklearn.tree import DecisionTreeClassifier def CTRA(X,y,XX): model = DecisionTreeClassifier() model.fit(X,y) predicted = model.predict(XX) return predicted 随机森林 from sklearn.ensemble import RandomForestClassifier def CTRA(X,y,XX): model = RandomForestClassifier() model.fit(X,y) predicted = model.predict(XX) return predicted GBDT (Gradient Boosting Decision Tree) from sklearn.ensemble import GradientBoostingClassifier def CTRA(X,y,XX): model = GradientBoostingClassifier() model.fit(X,y) predicted = model.predict(XX) return predicted 朴素贝叶斯:一个是基于高斯分布求概率,一个是基于多项式分布求概率,一个是基于伯努利分布求概率。 from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import BernoulliNB def GNB(X,y,XX): model =GaussianNB() model.fit(X,y) predicted = model.predict(XX) return predicted def MNB(X,y,XX): model = MultinomialNB() model.fit(X,y) predicted = model.predict(XX return predicted def BNB(X,y,XX): model = BernoulliNB() model.fit(X,y) predicted = model.predict(XX return predicted 以上就是小猿圈Python讲师对于使用sklearn库实现各种分类算法的介绍了,相信你有了一定的了解,那么赶快去做吧,记住学习是一门需要坚持的Python交流群:874680195,如果遇到问题可以到小猿圈官网找答案的,里面有最新最全面的课程。
|