设为首页 收藏本站
查看: 821|回复: 0

[经验分享] Apache Spark源码走读之12

[复制链接]

尚未签到

发表于 2015-7-31 08:18:16 | 显示全部楼层 |阅读模式
  欢迎转载,转载请注明出处,徽沪一郎。

楔子
  Hive是基于Hadoop的开源数据仓库工具,提供了类似于SQL的HiveQL语言,使得上层的数据分析人员不用知道太多MapReduce的知识就能对存储于Hdfs中的海量数据进行分析。由于这一特性而收到广泛的欢迎。
  Hive的整体框架中有一个重要的模块是执行模块,这一部分是用Hadoop中MapReduce计算框架来实现,因而在处理速度上不是非常令人满意。由于Spark出色的处理速度,有人已经成功将HiveQL的执行利用Spark来运行,这就是已经非常闻名的Shark开源项目。
  在Spark 1.0中,Spark自身提供了对Hive的支持。本文不准备分析Spark是如何来提供对Hive的支持的,而只着重于如何搭建Hive On Spark的测试环境。

安装概览
  整体的安装过程分为以下几步


  • 搭建Hadoop集群 (整个cluster由3台机器组成,一台作为Master,另两台作为Slave)
  • 编译Spark 1.0,使其支持Hadoop 2.4.0和Hive
  • 运行Hive on Spark的测试用例 (Spark和Hadoop Namenode运行在同一台机器)

Hadoop集群搭建

创建虚拟机
  创建基于kvm的虚拟机,利用libvirt提供的图形管理界面,创建3台虚拟机,非常方便。内存和ip地址分配如下


  • master 2G    192.168.122.102
  • slave1  4G    192.168.122.103
  • slave2  4G    192.168.122.104
  在虚拟机上安装os的过程就略过了,我使用的是arch linux,os安装完成之后,确保以下软件也已经安装


  • jdk
  • openssh

创建用户组和用户
  在每台机器上创建名为hadoop的用户组,添加名为hduser的用户,具体bash命令如下所示

groupadd hadoop
useradd -b /home -m -g hadoop hduser
passwd hduser

无密码登录
  在启动slave机器上的datanode或nodemanager的时候需要输入用户名密码,为了避免每次都要输入密码,可以利用如下指令创建无密码登录。注意是从master到slave机器的单向无密码。

cd $HOME/.ssh
ssh-keygen -t dsa

  将id_dsa.pub复制为authorized_keys,然后上传到slave1和slave2中的$HOME/.ssh目录

cp id_dsa.pub authorized_keys
#确保在slave1和slave2机器中,hduser的$HOME目录下已经创建好了.ssh目录
scp authorized_keys slave1:$HOME/.ssh
scp authorized_keys slave2:$HOME/.ssh

更改每台机器上的/etc/hosts
  在组成集群的master, slave1和slave2中,向/etc/hosts文件添加如下内容

192.168.122.102 master
192.168.122.103 slave1
192.168.122.104 slave2

  如果更改完成之后,可以在master上执行ssh slave1来进行测试,如果没有输入密码的过程就直接登录入slave1就说明上述的配置成功。

下载hadoop 2.4.0
  以hduser身份登录master,执行如下指令

cd /home/hduser
wget http://mirror.esocc.com/apache/hadoop/common/hadoop-2.4.0/hadoop-2.4.0.tar.gz
mkdir yarn
tar zvxf hadoop-2.4.0.tar.gz -C yarn

修改hadoop配置文件

添加如下内容到.bashrc

export HADOOP_HOME=/home/hduser/yarn/hadoop-2.4.0
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

修改$HADOOP_HOME/libexec/hadoop-config.sh
  在hadoop-config.sh文件开头处添加如下内容

export JAVA_HOME=/opt/java

$HADOOP_CONF_DIR/yarn-env.sh
  在yarn-env.sh开头添加如下内容

export JAVA_HOME=/opt/java
export HADOOP_HOME=/home/hduser/yarn/hadoop-2.4.0
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

xml配置文件修改
  文件1: $HADOOP_CONF_DIR/core-site.xml






fs.default.name
hdfs://master:9000


hadoop.tmp.dir
/home/hduser/yarn/hadoop-2.4.0/tmp



  文件2: $HADOOP_CONF_DIR/hdfs-site.xml





dfs.replication
2


dfs.permissions
false



  文件3: $HADOOP_CONF_DIR/mapred-site.xml




mapreduce.framework.name
yarn



  文件4: $HADOOP_CONF_DIR/yarn-site.xml




yarn.nodemanager.aux-services
mapreduce_shuffle


yarn.nodemanager.aux-services.mapreduce.shuffle.class
org.apache.hadoop.mapred.ShuffleHandler


yarn.resourcemanager.resource-tracker.address
master:8025


yarn.resourcemanager.scheduler.address
master:8030


yarn.resourcemanager.address
master:8040



  文件5: $HADOOP_CONF_DIR/slaves
  在文件中添加如下内容

slave1
slave2

创建tmp目录
  在$HADOOP_HOME下创建tmp目录

mkdir $HADOOP_HOME/tmp

复制yarn目录到slave1和slave2
  刚才所作的配置文件更改发生在master机器上,将整个更改过的内容全部复制到slave1和slave2。

for target in slave1 slave2
do
scp -r yarn $target:~/
scp $HOME/.bashrc $target:~/
done

  批量处理是不是很爽

格式化namenode
  在master机器上对namenode进行格式化

bin/hadoop namenode -format

启动cluster集群

sbin/hadoop-daemon.sh start namenode
sbin/hadoop-daemons.sh start datanode
sbin/yarn-daemon.sh start resourcemanager
sbin/yarn-daemons.sh start nodemanager
sbin/mr-jobhistory-daemon.sh start historyserver

  注意: daemon.sh表示只在本机运行,daemons.sh表示在所有的cluster节点上运行。

验证hadoop集群安装正确与否
  跑一个wordcount示例,具体步骤不再列出,可参考本系列中的第11篇

编译Spark 1.0
  Spark的编译还是很简单的,所有失败的原因大部分可以归结于所依赖的jar包无法正常下载。
  为了让Spark 1.0支持hadoop 2.4.0和hive,请使用如下指令编译

SPARK_HADOOP_VERSION=2.4.0 SPARK_YARN=true   SPARK_HIVE=true sbt/sbt assembly

  如果一切顺利将会在assembly目录下生成 spark-assembly-1.0.0-SNAPSHOT-hadoop2.4.0.jar

创建运行包
  编译之后整个$SPARK_HOME目录下所有的文件体积还是很大的,大概有两个多G。有哪些是运行的时候真正需要的呢,下面将会列出这些目录和文件。


  • $SPARK_HOME/bin
  • $SPARK_HOME/sbin
  • $SPARK_HOME/lib_managed
  • $SPARK_HOME/conf
  • $SPARK_HOME/assembly/target/scala-2.10
  将上述目录的内容复制到/tmp/spark-dist,然后创建压缩包

mkdir /tmp/spark-dist
for i in $SPARK_HOME/{bin,sbin,lib_managed,conf,assembly/target/scala-2.10}
do
cp -r $i /tmp/spark-dist
done
cd /tmp/
tar czvf spark-1.0-dist.tar.gz spark-dist

上传运行包到master机器
  将生成的运行包上传到master(192.168.122.102)

scp spark-1.0-dist.tar.gz hduser@192.168.122.102:~/

运行hive on spark测试用例
  经过上述重重折磨,终于到了最为紧张的时刻了。
  以hduser身份登录master机,解压spark-1.0-dist.tar.gz

#after login into the master as hduser
tar zxvf spark-1.0-dist.tar.gz
cd spark-dist

  更改conf/spark-env.sh

export SPARK_LOCAL_IP=127.0.0.1
export SPARK_MASTER_IP=127.0.0.1

运行最简单的example
  用bin/spark-shell指令启动shell之后,运行如下scala代码

val sc: SparkContext // An existing SparkContext.
val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
// Importing the SQL context gives access to all the public SQL functions and implicit conversions.
import hiveContext._
hql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
hql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")
// Queries are expressed in HiveQL
hql("FROM src SELECT key, value").collect().foreach(println)

  如果一切顺利,最后一句hql会返回key及value

参考资料


  • Steps to install Hadoop 2.x release (Yarn or Next-Gen) on multi-node cluster

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-92451-1-1.html 上篇帖子: Windows下apache php wordpress配置 下篇帖子: Apache common-fileupload用户指南
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表