设为首页 收藏本站
查看: 1342|回复: 0

[经验分享] 纯Python综合图像处理小工具(3)10种滤镜算法

[复制链接]

尚未签到

发表于 2015-11-29 08:35:08 | 显示全部楼层 |阅读模式
  <背景>
  滤镜处理是图像处理中一种非常常见的方法。比如photoshop中的滤镜效果,除了自带的滤镜,还扩展了很多第三方的滤镜效果插件,可以对图像做丰富多样的变换;很多手机app实现了实时滤镜功能,最有名的当属Instagram。
  PIL中主要涉及到卷积滤镜,其原理是针对数字图像的像素矩阵,使用一个nxn的方形矩阵做滤波器(即卷积核kernel,常见的如3x3,5x5等),对该图像像素进行卷积遍历(即截取和卷积核同等大小的像素矩阵进行卷积运算),每一个输出像素都是一定区域像素按一定权重组合计算出的结果(像素不独立,受到邻近像素的影响,邻近像素区域可以调整,选取范围越大,计算量越大,图像处理时间越长),遍历后的图像就是输出图像。如果算法经过优化,遍历的速度足够快,那就是实时滤镜(live filter),可以实时预览图像过滤后的效果。
ImageFilter是Python PIL的滤镜模块,当前版本支持10种加强滤镜,通过这些预定义的滤镜,可以方便的对图片进行一些过滤操作,从而去掉图片中的噪音(部分的消除),这样可以降低图像处理算法的复杂度(如模式识别等),更方便的实现和预览一些算法的效果。  本文脚本包含以下全部滤镜, 实现了10种图像处理滤镜的效果预览和JPEG文件保存。
  ImageFilter.BLUR

模糊滤镜
ImageFilter.CONTOUR
轮廓
ImageFilter.DETAIL
细节滤镜
ImageFilter.EDGE_ENHANCE边界加强
ImageFilter.EDGE_ENHANCE_MORE边界加强(阀值更 大)
ImageFilter.EMBOSS浮雕滤镜
ImageFilter.FIND_EDGES边界滤镜
ImageFilter.SMOOTH平滑滤镜
ImageFilter.SMOOTH_MORE平滑滤镜(阀值更大)
ImageFilter.SHARPEN锐化滤镜
  
  <效果>
  原图:
DSC0000.jpg
  
  模糊滤镜:
DSC0001.jpg
  
  锐度增强滤镜:
DSC0002.jpg
  
  细节滤镜:
DSC0003.jpg
  
  轮廓滤镜:
DSC0004.jpg
  
  边界提取滤镜:
DSC0005.jpg
  
  边界增强滤镜:
DSC0006.jpg
  
  边界增强滤镜-加强版:
DSC0007.jpg
  
  平滑滤镜:
DSC0008.jpg
  
  平滑滤镜-加强版:
DSC0009.jpg
  
  浮雕滤镜:
DSC00010.jpg
  
  <源码分析>
   PIL库的滤镜算法可以在Python\Lib\site-packages\PIL路径下找到,如下所示:
DSC00011.png   
  
  在PIL路径下,我们看到了三个同名但后缀不同的文件:ImageFilter.py ,ImageFilter.pyc ,ImageFilter.pyo 。
  .py文件:存放的是脚本源代码;
  .pyc文件 :是同名的.py编译后的字节码文件,用来供解释器解释执行;
  .pyo文件 :是同名的.pyc文件经过优化后的字节码文件,通常体积更小,运行更快。
  滤镜算法在ImageFilter.py文件中。
  如前文所述,每一个滤镜通常对应着一个滤波器(即kernel),PIL中的kernel均为常见的3x3和5x5方形矩阵,下面是PIL中9种滤镜对应的矩阵:
  
  模糊滤镜:



class BLUR(BuiltinFilter):
    name = "Blur"
    filterargs = (5, 5), 16, 0, (
        1,  1,  1,  1,  1,
        1,  0,  0,  0,  1,
        1,  0,  0,  0,  1,
        1,  0,  0,  0,  1,
        1,  1,  1,  1,  1
        )
          轮廓滤镜:

class CONTOUR(BuiltinFilter):
    name = "Contour"
    filterargs = (3, 3), 1, 255, (
        -1, -1, -1,
        -1,  8, -1,
        -1, -1, -1
        )  
  细节滤镜:

class DETAIL(BuiltinFilter):
    name = "Detail"
    filterargs = (3, 3), 6, 0, (
        0, -1,  0,
        -1, 10, -1,
        0, -1,  0
        )  
  边缘增强滤镜:

class EDGE_ENHANCE(BuiltinFilter):
    name = "Edge-enhance"
    filterargs = (3, 3), 2, 0, (
        -1, -1, -1,
        -1, 10, -1,
        -1, -1, -1
        )  
  边缘增强滤镜-增强版:
该增强版和原滤镜仅仅是矩阵2行2列的一个参数大小不同,实际是修改了中心像素的权重。这个数值可以任意修改以自定义边缘增强的幅度。
class EDGE_ENHANCE_MORE(BuiltinFilter):
    name = "Edge-enhance More"
    filterargs = (3, 3), 1, 0, (
        -1, -1, -1,
        -1,  9, -1,
        -1, -1, -1
        )  
  浮雕滤镜

class EMBOSS(BuiltinFilter):
    name = "Emboss"
    filterargs = (3, 3), 1, 128, (
        -1,  0,  0,
        0,  1,  0,
        0,  0,  0
        )  

  边缘提取滤镜:

class FIND_EDGES(BuiltinFilter):
    name = "Find Edges"
    filterargs = (3, 3), 1, 0, (
        -1, -1, -1,
        -1,  8, -1,
        -1, -1, -1
        )  
  平滑滤镜:

class SMOOTH(BuiltinFilter):
    name = "Smooth"
    filterargs = (3, 3), 13, 0, (
        1,  1,  1,
        1,  5,  1,
        1,  1,  1
        )   
  平滑滤镜-加强版:
  平滑滤镜的加强是增加了滤镜窗口的尺寸,有3x3扩展到5x5, 这样每一个新像素的产生会包含25个周围原始像素的加权贡献(离得越近,贡献越大),这样的结果会更加平滑自然,代价是处理速度会明显的变慢。

class SMOOTH_MORE(BuiltinFilter):
    name = "Smooth More"
    filterargs = (5, 5), 100, 0, (
        1,  1,  1,  1,  1,
        1,  5,  5,  5,  1,
        1,  5, 44,  5,  1,
        1,  5,  5,  5,  1,
        1,  1,  1,  1,  1
        )  

  锐化滤镜:

class SHARPEN(BuiltinFilter):
    name = "Sharpen"
    filterargs = (3, 3), 16, 0, (
        -2, -2, -2,
        -2, 32, -2,
        -2, -2, -2
        )  
  此外,这些滤镜不仅可以独立使用,还可以自由组合,比如边缘提取+平滑滤镜,可以得到更加干净的边缘提取图像等等,此处不一一列举。
  左图为原始边界提取图,右侧为平滑后的边界图。
DSC00012.jpg
  
  <脚本源码>

#start
# -*- coding: cp936 -*-
import Image,ImageDraw
import ImageFilter,random,sys
img = Image.open("1.jpg")
##图像处理##
#转换为RGB图像
img = img.convert("RGB")              
#经过PIL自带filter处理
imgfilted_b = img.filter(ImageFilter.BLUR)
imgfilted_c = img.filter(ImageFilter.CONTOUR)
imgfilted_ee = img.filter(ImageFilter.EDGE_ENHANCE)
imgfilted_ee_m = img.filter(ImageFilter.EDGE_ENHANCE_MORE)
imgfilted_em = img.filter(ImageFilter.EMBOSS)                    
imgfilted_fe = img.filter(ImageFilter.FIND_EDGES)                                                
imgfilted_sm = img.filter(ImageFilter.SMOOTH)
imgfilted_sm_m = img.filter(ImageFilter.SMOOTH_MORE)
imgfilted_sh = img.filter(ImageFilter.SHARPEN)
imgfilted_d = img.filter(ImageFilter.DETAIL)
##组合使用filter
group_imgfilted = img.filter(ImageFilter.CONTOUR)
group_imgfilted = group_imgfilted.filter(ImageFilter.SMOOTH_MORE)
##图像保存##
imgfilted_b.save("1b.jpg")
imgfilted_c.save("1c.jpg")
imgfilted_ee.save("1ee.jpg")
imgfilted_ee_m.save("1eem.jpg")
imgfilted_em.save("1em.jpg")
imgfilted_fe.save("1fe.jpg")                                
imgfilted_sm.save("1sm.jpg")
imgfilted_sm_m.save("1smm.jpg")
imgfilted_sh.save("1sh.jpg")
imgfilted_d.save("1d.jpg")
group_imgfilted.save("1group.jpg")
##图像显示##
imgfilted_b.show()
imgfilted_c.show()
imgfilted_ee.show()
imgfilted_ee_m.show()
imgfilted_em.show()
imgfilted_fe.show()                                
imgfilted_sm.show()
imgfilted_sm_m.show()
imgfilted_sh.show()
imgfilted_d.show()
group_imgfilted.show()
#end  

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-144767-1-1.html 上篇帖子: 用pygame学习初级python(一) 15.4.19 下篇帖子: 《Python爬虫学习系列教程》学习笔记
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表