设为首页 收藏本站
查看: 773|回复: 0

[经验分享] python 迭代器和生成器

[复制链接]
累计签到:1 天
连续签到:1 天
发表于 2015-11-29 12:43:43 | 显示全部楼层 |阅读模式
python 迭代器和生成器

迭代器
  迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前进到下一结果,而在一系列结果的末尾是,则会引发StopIteration。
DSC0000.png
  在for循环中,Python将自动调用工厂函数iter()获得迭代器,自动调用next()获取元素,还完成了检查StopIteration异常的工作。
DSC0001.png
  常用的几个内建数据结构tuple、list、set、dict都支持迭代器,字符串也可以使用迭代操作。
  你也可以自己实现一个迭代器,如上所述,只需要在类的__iter__方法中返回一个对象,这个对象拥有一个next()方法,这个方法能在恰当的时候抛出StopIteration异常即可。但是需要自己实现迭代器的时候不多,即使需要,使用生成器会更轻松。



#!/usr/bin/env python
# coding=utf-8
class test:
def __init__(self, input_list):
self.list = input_list
self.i = 0
def __iter__(self):
return self
def next(self):
if self.i == len(self.list):
self.i = 0
raise StopIteration
self.i += 1
return  self.list[self.i - 1]
DSC0002.png
  使用迭代器一个显而易见的好处就是:每次只从对象中读取一条数据,不会造成内存的过大开销。
  例如:



/* 把文件一次加载到内存中,然后逐行打印。当文件很大时,这个方法的内存开销就很大了 */
for line in open("test.txt").readlines():
print line
/* 这是最简单也是运行速度最快的写法,他并没显式的读取文件,而是利用迭代器每次读取下一行 */
for line in open("test.txt"):   #use file iterators
print line
生成器
  生成器的编写方法和函数定义类似,只是在return的地方改为yield。
  生成器中可以有多个yield。当生成器遇到一个yield时,会暂停运行生成器,返回yield后面的值。当再次调用生成器的时候,会从刚才暂停的地方继续运行,直到下一个yield。
  生成器自身又构成一个迭代器,每次迭代时使用一个yield返回的值。
DSC0003.png
  需要注意的是,生成器中不需要return语句,不需要指定返回值,在生成器中已经存在默认的返回语句
  生成器表达式



(i for i in range(5))
// 返回迭代器
<generator object <genexpr> at 0x7ff3e8f0d960>
  列表解析,返回list



[i for i in range(5)]
// 返回list
[0, 1, 2, 3, 4]
  在这里存在一个问题,那就是range(5)会返回一个长度为5的数据,如果是range(1000)那么就会占用一个1000大小的数组空间;如果我们采用`生成器`,在需要的时候产生一个数字,那么空间的占用情况就会降低,这里我们可以使用xrange()函数来实现。



'''
xrange
函数说明:用法与range完全相同,所不同的是生成的不是一个数组,而是一个生成器。
xrange示例:
'''
>>> xrange(5)
xrange(5)
>>> list(xrange(5))
[0, 1, 2, 3, 4]
>>> xrange(1,5)
xrange(1, 5)
>>> list(xrange(1,5))
[1, 2, 3, 4]
>>> xrange(0,6,2)
xrange(0, 6, 2)
>>> list(xrange(0,6,2))
[0, 2, 4]
  所以xrange做循环的性能比range好,尤其是返回很大的时候,尽量用xrange吧,除非你是要返回一个列表。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-144918-1-1.html 上篇帖子: mongo数据库基本操作--python篇 下篇帖子: python异常以及面向对象编程
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表