设为首页 收藏本站
查看: 1147|回复: 0

[经验分享] Spark(Hive) SQL中UDF的使用(Python)

[复制链接]

尚未签到

发表于 2015-11-30 14:59:35 | 显示全部楼层 |阅读模式
  

相对于使用MapReduce或者Spark Application的方式进行数据分析,使用Hive SQL或Spark SQL能为我们省去不少的代码工作量,而Hive SQL或Spark SQL本身内置的各类UDF也为我们的数据处理提供了不少便利的工具,当这些内置的UDF不能满足于我们的需要时,Hive SQL或Spark SQL还为我们提供了自定义UDF的相关接口,方便我们根据自己的需求进行扩展。

在Hive的世界里使用自定义UDF的过程是比较复杂的。我们需要根据需求使用Java语言开发相应的UDF(UDAF、UDTF),然后将UDF的代码及其依赖编译打包为Jar,使用方法有两种:

(1)临时函数

在一次会话(Session)中使用如下语句创建临时函数:

ADD JAR /run/jar/udf_test.jar;
CREATE TEMPORARY FUNCTION my_add AS 'com.hive.udf.Add';

这种方式有一个缺点:每一次会话过程中使用函数时都需要创建,而且仅在当前会话中有效。

(2)永久函数

这个特性需要高版本的Hive支持,它的好处是可以将UDF Jar存放至HDFS,函数仅需要创建一次即可以永久使用,如下:

CREATE FUNCTION func.ipToLocationBySina AS 'com.sina.dip.hive.function.IPToLocationBySina' USING JAR 'hdfs://dip.cdh5.dev:8020/user/hdfs/func/location.jar';

虽然永久函数相对于临时函数有一定优势,但Java语言的开发门槛很大程度上妨碍了UDF在实际数据分析过程中使用,毕竟我们的数据分析师多数是以Python、SQL为主要分析工具的,每一次UDF的开发都需要工程师的参与,开发效率与应用效果都是不是很好(可能需要频繁更新UDF的问题),PySpark的出现确很好地解决了这个问题:它可以非常方便地将一个普通的Python函数注册为一个UDF。

为了说明如何在Spark(Hive) SQL中的使用Python UDF,我们首先模拟一张数据表,为了简单起见,该表仅有一行一列数据:

DSC0000.png

我们模拟了一张数据表temp_table,该表仅有一列,其中列名称为col,列类型为字符串且不允许包含Null,输出结果:

DSC0001.png

我们在表temp_table的基础之上演示UDF的使用方法:

DSC0002.png

首先我们定义一个普通的Python函数:func_string,为了简单起见它没有任何参数,仅仅返回一个简单的字符串;

然后我们通过HiveContext registerFunction即可以将函数func_string注册为UDF,registerFunction接收两个参数:UDF名称、UDF关联的Python函数;

最后我们可以在Spark(Hive) SQL中使用这个UDF,输出结果:

DSC0003.png


我们需要注意的是,HiveContext registerFunction实际上有三个参数:

DSC0004.png

name:UDF名称;
f:UDF关联的Python函数;
returnType:UDF(Python函数)返回值类型,默认为StringType()。

上述示例中因为我们的UDF函数的返回值类型为字符串,因此使用Hive registerFunction注册UDF时省略了参数returnType,即returnType默认值为StringType(),如果UDF(Python函数)的返回值类型不为字符串,则需要显式为其指定returnType。

我们以类型IntegerType、ArrayType、StructType、MapType为例演示需要显式指定returnType的情况。

(1)IntegerType

DSC0005.png

DSC0006.png

(2)ArrayType

DSC0007.png

DSC0008.png

注意:ArrayType(数组)必须确保元素类型的一致性,如指定UDF返回值类型为ArrayType(IntegerType()),则函数func_array的返回值类型必须为list或tuple,其中的元素类型必须为int。

(3)StructType

DSC0009.png

DSC00010.png

注意:StructType必须确保函数的返回值类型为tuple,而且使用HiveContext registerFunction注册UDF时需要依次为其中的元素指定名称各类型,如上述示例中每一个元素的名称为first,类型为IntegerType;第二个元素的名称为second,类型为FloatType;第三个元素的名称为third,类型为StringType。

(4)MapType

DSC00011.png

DSC00012.png

注意:MapType必须确保函数的返回值类型为dict,而且所有的“key”应保持类型一致,“value”也就保持类型一致。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-145488-1-1.html 上篇帖子: PEP8 Python 编码规范 下篇帖子: Python中的sorted函数以及operator.itemgetter函数
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表