设为首页 收藏本站
查看: 759|回复: 0

[经验分享] python矩阵运算 不断收集整理

[复制链接]

尚未签到

发表于 2015-12-2 14:52:40 | 显示全部楼层 |阅读模式
python矩阵运算

转自:http://blog.sina.com.cn/s/blog_5f234d4701012p64.html




Python使用NumPy包完成了对N-维数组的快速便捷操作。使用这个包,需要导入numpy。SciPy包以NumPy包为基础,大大的扩展了numpy的能力。为了使用的方便,scipy包在最外层名字空间中包括了所有的numpy内容,因此只要导入了scipy,不必在单独导入numpy了!但是为了明确哪些是numpy中实现的,哪些是scipy中实现的,本文还是进行了区分。以下默认已经:import
numpy as np 以及 import scipy as sp

下面简要介绍Python和MATLAB处理数学问题的几个不同点。
1.MATLAB的基本是矩阵,而numpy的基本类型是多为数组,把matrix看做是array的子类。
2.MATLAB的索引从1开始,而numpy从0开始。

1.建立矩阵
a1=np.array([1,2,3],dtype=int)  
#建立一个一维数组,数据类型是int。也可以不指定数据类型,使用默认。几乎所有的数组建立函数都可以指定数据类型,即dtype的取值。
a2=np.array([[1,2,3],[2,3,4]])  
#建立一个二维数组。此处和MATLAB的二维数组(矩阵)的建立有很大差别。
同样,numpy中也有很多内置的特殊矩阵:
b1=np.zeros((2,3))  
#生成一个2行3列的全0矩阵。注意,参数是一个tuple:(2,3),所以有两个括号。完整的形式为:zeros(shape,dtype=)。相同的结构,有ones()建立全1矩阵。empty()建立一个空矩阵,使用内存中的随机值来填充这个矩阵。
b2=identity(n)   #建立n*n的单位阵,这只能是一个方阵。
b3=eye(N,M=None,k=0)  
#建立一个对角线是1其余值为0的矩阵,用k指定对角线的位置。M默认None。
此外,numpy中还提供了几个like函数,即按照某一个已知的数组的规模(几行几列)建立同样规模的特殊数组。这样的函数有zeros_like()、empty_like()、ones_like(),它们的参数均为如此形式:zeros_like(a,dtype=),其中,a是一个已知的数组。
c1=np.arange(2,3,0.1)  
#起点,终点,步长值。含起点值,不含终点值。
c2=np.linspace(1,4,10)  
#起点,终点,区间内点数。起点终点均包括在内。同理,有logspace()函数
d1=np.linalg.companion(a)  
#伴随矩阵
d2=np.linalg.triu()/tril()  
#作用同MATLAB中的同名函数
e1=np.random.rand(3,2)  
#产生一个3行2列的随机数组。同一空间下,有randn()/randint()等多个随机函数
fliplr()/flipud()/rot90()  
#功能类似MATLAB同名函数。
xx=np.roll(x,2)  
#roll()是循环移位函数。此调用表示向右循环移动2位。

2.数组的特征信息
先假设已经存在一个N维数组X了,那么可以得到X的一些属性,这些属性可以在输入X和一个.之后,按tab键查看提示。这里明显看到了Python面向对象的特征。
X.flags    #数组的存储情况信息。
X.shape  
#结果是一个tuple,返回本数组的行数、列数、……
X.ndim   #数组的维数,结果是一个数
X.size    #数组中元素的数量
X.itemsize  
#数组中的数据项的所占内存空间大小
X.dtype    #数据类型
X.T   #如果X是矩阵,发挥的是X的转置矩阵
X.trace()    #计算X的迹
np.linalg.det(a)   #返回的是矩阵a的行列式
np.linalg.norm(a,ord=None)  
#计算矩阵a的范数
np.linalg.eig(a)  
#矩阵a的特征值和特征向量
np.linalg.cond(a,p=None)  
#矩阵a的条件数
np.linalg.inv(a)  
#矩阵a的逆矩阵

3.矩阵分解
常见的矩阵分解函数,numpy.linalg均已经提供。比如cholesky()/qr()/svd()/lu()/schur()等。某些算法为了方便计算或者针对不同的特殊情况,还给出了多种调用形式,以便得到最佳结果。

4.矩阵运算
np.dot(a,b)用来计算数组的点积;vdot(a,b)专门计算矢量的点积,和dot()的区别在于对complex数据类型的处理不一样;innner(a,b)用来计算内积;outer(a,b)计算外积。
专门处理矩阵的数学函数在numpy的子包linalg中定义。比如np.linalg.logm(A)计算矩阵A的对数。可见,这个处理和MATLAB是类似的,使用一个m后缀表示是矩阵的运算。在这个空间内可以使用的有cosm()/sinm()/signm()/sqrtm()等。其中常规exp()对应有三种矩阵形式:expm()使用Pade近似算法、expm2()使用特征值分析算法、expm3()使用泰勒级数算法。在numpy中,也有一个计算矩阵的函数:funm(A,func)。

5.索引
numpy中的数组索引形式和Python是一致的。如:
x=np.arange(10)
print x[2]  
#单个元素,从前往后正向索引。注意下标是从0开始的。
print x[-2]  
#从后往前索引。最后一个元素的下标是-1
print x[2:5]  
#多个元素,左闭右开,默认步长值是1
print x[:-7]  
#多个元素,从后向前,制定了结束的位置,使用默认步长值
print x[1:7:2]   #指定步长值
x.shape=(2,5)  
#x的shape属性被重新赋值,要求就是元素个数不变。2*5=10
print x[1,3]  
#二维数组索引单个元素,第2行第4列的那个元素
print x[0]   #第一行所有的元素
y=np.arange(35).reshape(5,7)  
#reshape()函数用于改变数组的维度
print y[1:5:2,::2]  
#选择二维数组中的某些符合条件的元素

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-146431-1-1.html 上篇帖子: Python 打开目录与指定文件 下篇帖子: 《python基础教程》笔记之 列表
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表