设为首页 收藏本站
查看: 720|回复: 0

[经验分享] python中的几种集成分类器

[复制链接]

尚未签到

发表于 2015-12-3 04:03:20 | 显示全部楼层 |阅读模式
from sklearn import ensemble
  集成分类器(ensemble):
  1.bagging(ensemble.bagging.BaggingClassifier)
  对随机选取的子样本集分别建立基本分类器,然后投票决定最终的分类结果
  2.RandomForest(ensemble.RandomForestClassifier)
  对随机选取的子样本集分别建立m个CART(Classifier and Regression Tree),然后投票决定最终的分类结果
  Random在此处的意义:
  1)Bootstrap 中的随机选择子样本集
  2)Random subspace 的算法从属性中随机选择k个属性,每个树节点分裂时从这随机的k个属性中,选择最优的
  3.Boosting(ensemble.weight_boosting)
  在选择分类超平面时给样本加了一个权值,使得loss function尽量考虑那些分错类的样本。(i.e.分错类的样本weight 大)
  -boosting 重采样的不是样本,而是样本的分布。最后的分类结果是几个弱分类器的线性加权和。注意这几个弱分类器都是一种base classifier类别。
  -与bagging的区别:bagging 的训练集是随机的,各训练集是独立的;而boosting训练集的选择不是独立的,每次选择的训练集都依赖于上一次学习的结果;
  bagging的每个预测函数(即弱假设)没有权重,而Boosting根据每一次训练的训练误差得到该次预测函数的权重;
  bagging的各个预测函数可以并行生成,而boosting的只能顺序生成。对于神经网络这样极为耗时的学习方法,Bagging可通过并行训练节省大量的时间开销。
  -与bagging的共同点:都可以通过使用for循环给estimator赋不同的分类器类型,以实现集成多种分类器,而不是单一的某一种(比如决策树)。
  代表算法 Adaboost 和 Realboost。总的来说,Adaboost 简单好用,Realboost 准确
  4.Stacking
  在stacking(堆叠)方法中,每个单独分类器的输出会作为更高层分类器的输入,更高层分类器可以判断如何更好地合并这些来自低层的输出。
  
  参考文章:http://blog.csdn.net/abcjennifer/article/details/8164315

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-146506-1-1.html 上篇帖子: Python Tornado简单的http request 下篇帖子: Python 中计时器的使用
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表