SELECT first_name, last_name FROM employees WHERE salary > 100000
上面的例子很容易理解,我们不关心这些雇员记录从哪里来,我们所需要的只是那些高薪者的数据(译者注: salary>100000 )
我们从哪儿学习到这些?
如果 SQL 语言这么简单,那么是什么让人们“闻 SQL 色变”?主要的原因是:我们潜意识中的是按照命令式编程的思维方式思考问题的。就好像这样:“电脑,先执行这一步,再执行那一步,但是在那之前先检查一下 是否满足条件 A 和条件 B ”。例如,用变量传参、使用循环语句、迭代、调用函数等等,都是这种命令式编程的思维惯式。
关于 SQL 语句的执行顺序,有三个值得我们注意的地方:
1、 FROM 才是 SQL 语句执行的第一步,并非 SELECT 。数据库在执行 SQL 语句的第一步是将数据从硬盘加载到数据缓冲区中,以便对这些数据进行操作。(译 者注:原文为“The first thing that happens is loading data from the disk into memory, in order to operate on such data.”,但是并非如此,以 Oracle 等常用数据库为例,数据是从硬盘中抽取到数据缓冲区中进行操作。)
2、 SELECT 是在大部分语句执行了之后才执行的,严格的说是在 FROM 和 GROUP BY 之后执行的。理解这一点是非常重要的,这就是你不能在 WHERE 中使用在 SELECT 中设定别名的字段作为判断条件的原因。
SELECT A.x + A.y AS z FROM A WHERE z = 10 -- z 在此处不可用,因为SELECT是最后执行的语句!
如果你想重用别名z,你有两个选择。要么就重新写一遍 z 所代表的表达式:
SELECT A.x + A.y AS z FROM A WHERE (A.x + A.y) = 10
…或者求助于衍生表、通用数据表达式或者视图,以避免别名重用。请看下文中的例子。
3、 无论在语法上还是在执行顺序上, UNION 总是排在在 ORDER BY 之前。很多人认为每个 UNION 段都能使用 ORDER BY 排序,但是根据 SQL 语言标准和各个数据库 SQL 的执行差异来看,这并不是真的。尽管某些数据库允许 SQL 语句对子查询(subqueries)或者派生表(derived tables)进行排序,但是这并不说明这个排序在 UNION 操作过后仍保持排序后的顺序。
注意:并非所有的数据库对 SQL 语句使用相同的解析方式。如 MySQL、PostgreSQL和 SQLite 中就不会按照上面第二点中所说的方式执行。
<from clause> ::= FROM <table reference> [ { <comma> <table reference> }... ]
FROM 语句的“输出”是一张联合表,来自于所有引用的表在某一维度上的联合。我们们慢慢来分析:
FROM a, b
上面这句 FROM 语句的输出是一张联合表,联合了表 a 和表 b 。如果 a 表有三个字段, b 表有 5 个字段,那么这个“输出表”就有 8 ( =5+3)个字段。
这个联合表里的数据是 a*b,即 a 和 b 的笛卡尔积。换句话说,也就是 a 表中的每一条数据都要跟 b 表中的每一条数据配对。如果 a 表有3 条数据, b 表有 5 条数据,那么联合表就会有 15 ( =5*3)条数据。
FROM 输出的结果被 WHERE 语句筛选后要经过 GROUP BY 语句处理,从而形成新的输出结果。我们后面还会再讨论这方面问题。
如果我们从集合论(关系代数)的角度来看,一张数据库的表就是一组数据元的关系,而每个 SQL 语句会改变一种或数种关系,从而产生出新的数据元的关系(即产生新的表)。
FROM a, b
高级 SQL 程序员也许学会给你忠告:尽量不要使用逗号来代替 JOIN 进行表的连接,这样会提高你的 SQL 语句的可读性,并且可以避免一些错误。
利用逗号来简化 SQL 语句有时候会造成思维上的混乱,想一下下面的语句:
FROM a, b, c, d, e, f, g, h
WHERE a.a1 = b.bx
AND a.a2 = c.c1
AND d.d1 = b.bc
-- etc...
我们不难看出使用 JOIN 语句的好处在于:
安全。 JOIN 和要连接的表离得非常近,这样就能避免错误。
更多连接的方式,JOIN 语句能去区分出来外连接和内连接等。
我们学到了什么?
记着要尽量使用 JOIN 进行表的连接,永远不要在 FROM 后面使用逗号连接表。
6、 SQL 语句中不同的连接操作
SQL 语句中,表连接的方式从根本上分为五种:
EQUI JOIN
SEMI JOIN
ANTI JOIN
CROSS JOIN
DIVISION
EQUI JOIN
这是一种最普通的 JOIN 操作,它包含两种连接方式:
INNER JOIN(或者是 JOIN )
OUTER JOIN(包括: LEFT 、 RIGHT、 FULL OUTER JOIN)
用例子最容易说明其中区别:
-- This table reference contains authors and their books.
-- There is one record for each book and its author.
-- authors without books are NOT included
author JOIN book ON author.id = book.author_id
-- This table reference contains authors and their books
-- There is one record for each book and its author.
-- ... OR there is an "empty" record for authors without books
-- ("empty" meaning that all book columns are NULL)
author LEFT OUTER JOIN book ON author.id = book.author_id
-- Using IN
FROM author
WHERE author.id IN (SELECT book.author_id FROM book)
-- Using EXISTS
FROM author
WHERE EXISTS (SELECT 1 FROM book WHERE book.author_id = author.id)
尽管没有严格的规定说明你何时应该使用 IN ,何时应该使用 EXISTS ,但是这些事情你还是应该知道的:
-- Find only those authors who also have books
SELECT DISTINCT first_name, last_name
FROM author
JOIN book ON author.id = book.author_id
这是一种很糟糕的写法,原因如下:
这种连接的关系跟 SEMI JOIN 刚好相反。在 IN 或者 EXISTS 前加一个 NOT 关键字就能使用这种连接。举个例子来说,我们列出书名表里没有书的作者:
-- Using IN
FROM author
WHERE author.id NOT IN (SELECT book.author_id FROM book)
-- Using EXISTS
FROM author
WHERE NOT EXISTS (SELECT 1 FROM book WHERE book.author_id = author.id)
关于性能、可读性、表达性等特性也完全可以参考 SEMI JOIN。
这篇博文介绍了在使用 NOT IN 时遇到 NULL 应该怎么办,因为有一点背离本篇主题,就不详细介绍,有兴趣的同学可以读一下
(http://blog.jooq.org/2012/01/27/sql-incompatibilities-not-in-and-null-values/)。
CROSS JOIN
这个连接过程就是两个连接的表的乘积:即将第一张表的每一条数据分别对应第二张表的每条数据。我们之前见过,这就是逗号在 FROM 语句中的用法。在实际的应用中,很少有地方能用到 CROSS JOIN,但是一旦用上了,你就可以用这样的 SQL语句表达:
-- Combine every author with every book
author CROSS JOIN book
-- A derived table
FROM (SELECT * FROM author)
派生表可以有效的避免由于 SQL 逻辑而产生的问题。举例来说:如果你想重用一个用 SELECT 和 WHERE 语句查询出的结果,这样写就可以(以 Oracle 为例):
-- Get authors' first and last names, and their age in days
SELECT first_name, last_name, age
FROM (
SELECT first_name, last_name, current_date - date_of_birth age
FROM author
)
-- If the age is greater than 10000 days
WHERE age > 10000
需要我们注意的是:在有些数据库,以及 SQL : 1990 标准中,派生表被归为下一级——通用表语句( common table experssion)。这就允许你在一个 SELECT 语句中对派生表多次重用。上面的例子就(几乎)等价于下面的语句:
WITH a AS (
SELECT first_name, last_name, current_date - date_of_birth age
FROM author
)
SELECT *
FROM a
WHERE age > 10000
当然了,你也可以给“ a ”创建一个单独的视图,这样你就可以在更广泛的范围内重用这个派生表了。更多信息可以阅读下面的文章(http://en.wikipedia.org/wiki/View_%28SQL%29)。
GROUP BY A.x, A.y, B.z
上面语句的结果就是产生出了一个包含三个字段的新的表的引用。我们来仔细理解一下这句话:当你应用 GROUP BY 的时候, SELECT 后没有使用聚合函数的列,都要出现在 GROUP BY 后面。(译者注:原文大意为“当你是用 GROUP BY 的时候,你能够对其进行下一级逻辑操作的列会减少,包括在 SELECT 中的列”)。
需要注意的是:其他字段能够使用聚合函数:
SELECT A.x, A.y, SUM(A.z) FROM A GROUP BY A.x, A.y
还有一点值得留意的是: MySQL 并不坚持这个标准,这的确是令人很困惑的地方。(译者注:这并不是说 MySQL 没有 GROUP BY 的功能)但是不要被 MySQL 所迷惑。 GROUP BY 改变了对表引用的方式。你可以像这样既在 SELECT 中引用某一字段,也在 GROUP BY 中对其进行分组。
一些更复杂的规则多到足够写出另一篇文章了。比如:为何你不能在一个没有 GROUP BY 的 SELECT 语句中同时使用普通函数和聚合函数?(上面的第 4 条)
原因如下:
凭直觉,这种做法从逻辑上就讲不通。
如果直觉不能够说服你,那么语法肯定能。 SQL : 1999 标准引入了 GROUPING SETS,SQL: 2003 标准引入了 group sets : GROUP BY() 。无论什么时候,只要你的语句中出现了聚合函数,而且并没有明确的 GROUP BY 语句,这时一个不明确的、空的 GROUPING SET 就会被应用到这段 SQL 中。因此,原始的逻辑顺序的规则就被打破了,映射(即 SELECT )关系首先会影响到逻辑关系,其次就是语法关系。(译者注:这段话原文就比 较艰涩,可以简单理解如下:在既有聚合函数又有普通函数的 SQL 语句中,如果没有 GROUP BY 进行分组,SQL 语句默认视整张表为一个分组,当聚合函数对某一字段进行聚合统计的时候,引用的表中的每一条 record 就失去了意义,全部的数据都聚合为一个统计值,你此时对每一条 record 使用其它函数是没有意义的)。