设为首页 收藏本站
查看: 1000|回复: 0

[经验分享] Hadoop源代码分析(一四)

[复制链接]

尚未签到

发表于 2016-12-12 06:22:43 | 显示全部楼层 |阅读模式
  继续DataXceiver分析,下一块硬骨头是写数据块。HDFS的写数据操作,比读数据复杂N多倍。读数据的时候,只需要在多个数据块文件的选一个读,就可以了;但是,写数据需要同时写到多个数据块文件上,这就比较复杂了。HDFS实现了了Google写文件时的机制,如下图:
  
 

  数据流从客户端开始,流经一系列的节点,到达最后一个DataNode。图中的所有DataNode只需要写一次硬盘,DataNode1和DataNode2会将从socket上接受到的数据,直接写到到下个节点的socket上。
  我们来看一下写数据块的请求。
  
 

  首先是客户端的版本号和一个字节的操作码,接下来是我们熟悉的blockId和generationStamp。参数pipelineSize是整个数据流链的长度,以上面为例,pipelineSize=3。isRecovery指示这次写是否是一次恢复操作,还记得我们在讨论FSDataset.writeToBlock时的那个参数吗?isRecovery来自客户端。client是客户端的名字,就是发起请求的节点名,需要特别注意的是,如果是从NameNode来的复制请求,client为空。hasSrcDataNode是一个标志位,如果被设置,表明源节点是个DataNode,接下来读取的数据就是DataNode的信息。numTargets是目标节点的数目,包括当前节点,以上面的图为例,DataNode1上这个参数值为3,到了DataNode3,就只有1了。targets包含了目标节点的相关信息,根据这些信息,就可以创建到它们上面的socket连接。targets后跟着的是校验头。
  writeBlock最开始是处理上面提到的消息包,然后创建一个BlockReceiver。接下来就是创建一堆用于读写的流,如下图(图中除了in外,都是在writeBlock中创建,这个图还不涉及在BlockReceiver对本地文件读写的流):
  
 

  在进行实际的数据写之前,上面的这些流会被建立起来(也就是说,DataNode1到DataNode3都可写以后,才开始处理写数据)。如果其中某一个点出错了,那么,出错的节点名会通过mirrorIn发送回来,一直沿着这条链,传播到客户端。
  如果一切正常,那么,BlockReceiver.receiveBlock就开始干活了。
  BlockReceiver的构造函数会创建写数据块和校验数据的输出流。剩下的就交给receiveBlock这个大家伙了。首先receiveBlock会再启动一个线程(一般来说,BlockReceiver就跑在它自己的线程上),用于处理应答(内部类PacketResponder定义了该线程),然后就不断调用receivePacket读数据。
  数据是以分块的形式传送,格式和读Block的时候是一样的。如下图(很奇怪,为啥不抽象为类):
  
 

  注意:如果当前DataNode处于数据流的中间,该数据包会发送到下一个节点。
  接下来的处理,就是处理数据和校验,并分别写到数据块文件和数据块元数据文件。如果出错,抛出的异常会导致receiveBlock关闭相关的输出流,并终止传输。注意,数据校验出错还会上报到NameNode上。
  PacketResponder用于处理应答。也就是上面讲的mirrorIn和replyOut。PacketResponder里有一个队列ackQueue,receivePacket每收到一个包,都会往队列里添加一项。PacketResponder的run方法,根据工作的DataNode所处的位置,行为不一样。
  最后一个DataNode由于没有后续节点,PacketResponder的ackQueue每收到一项,表明对应的数据块已经处理完毕,那么就可以发送成功应答。如果该应答是最后一个包的,PacketResponder会关闭相关的输出流,并提交(前面讲FSDataset时后我们讨论过的finalizeBlock方法)。
  如果DataNode有后续节点,那么,它必须等到后续节点的成功应答,才可以发送应答到它前面的节点。
  PacketResponder的run方法还引入了心跳机制,用于检测连接是否还存在。
  注意:所有改变DataNode的操作,需要把信息更新到NameNode上,这是通过DataNode.notifyNamenodeReceivedBlock方法,然后通过DataNode统一发送到NameNode上。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-312803-1-1.html 上篇帖子: Hadoop源代码分析(一三) 下篇帖子: Hadoop源代码分析(一五)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表