设为首页 收藏本站
查看: 1245|回复: 0

[经验分享] Hadoop白皮书(4):数据仓库Hive简介

[复制链接]

尚未签到

发表于 2016-12-12 08:10:50 | 显示全部楼层 |阅读模式
Hive 是一种建立在 Hadoop 之上的数据仓库架构。它提供了:

· 一套方便的实施数据抽取(ETL)的工具。

· 一种让用户对数据描述其结构的机制。

· 支持用户对存储在Hadoop中的海量数据进行查询和分析的能力。

Hive 的基本特点是它采用 HDFS 进行数据存储并利用 Map/Reduce 框架进行数据操作。所以从本质上来说,Hive 就是个编译器,它把用户的操作(查询或者 ETL)变换成Map/Reduce 任务,利用 Map/Reduce 框架执行这些任务以对HDFS上的海量数据进行处理。

Hive 被设计成一种批处理系统。它利用 Map/Reduce 框架来处理数据。因此,它在Map/Reduce 任务提交和调度上有比较高的开销。即使对于小数据集(几百兆)来说,延迟也是分钟级的。但其最大的优点是延迟相对于数据集大小是线性增加的。

Hive 定义了一种简单的类 SQL 查询语言 HiveQL,让熟悉 SQL 的用户可以非常容易的进行查询。与此同时,HiveQL 也允许熟悉 Map/Reduce 框架的程序员在查询中插入自定义的 mapper 和 reducer 脚本以扩展 Hive 内嵌的功能,完成更复杂的分析。

DSC0000.jpg
Hive特点

针对海量数据的高性能查询和分析系统

由于 Hive 的查询是通过 MapReduce 框架实现的,而 MapReduce 本身就是为实现针对海量数据的高性能处理而设计的。所以 Hive 天然就能高效的处理海量数据。

与此同时,Hive 针对 HiveQL 到 MapReduce的翻译进行了大量的优化,从而保证了生成的MapReduce 任务是高效的。在实际应用中,Hive 可以高效的对 TB 甚至 PB级的数据进行处理。

类SQL的查询语言

HiveQL 和 SQL 非常类似,所以一个熟悉SQL 的用户基本不需要培训就可以非常容易的使用 Hive 进行很复杂的查询。

HiveQL 灵活的可扩展性(Extendibility)

除了 HiveQL 自身提供的能力,用户还可以自定义其使用的数据类型、也可以用任何语言自定义 mapper 和 reducer 脚本,还可以自定义函数(普通函数、聚集函数)等。这就赋予了 HiveQL 极大的可扩展性。用户可以利用这种可扩展性实现非常复杂的查询。

高扩展性(Scalability)和容错性

Hive本身并没有执行机制,用户查询的执行是通过 MapReduce 框架实现的。由于MapReduce 框架本身具有高度可扩展(计算能力随 Hadoop 机群中机器的数量增加而线性增加)和高容错的特点,所以 Hive也相应具有这些特点。

与 Hadoop 其他产品完全兼容

Hive 自身并不存储用户数据,而是通过接口访问用户数据。这就使得 Hive支持各种数据源和数据格式。例如,它支持处理 HDFS 上的多种文件格式(TextFile、SequenceFile 等),还支持处理 HBase 数据库。用户也完全可以实现自己的驱动来增加新的数据源和数据格式。一种理想的应用模型是将数据存储在 HBase 中实现实时访问,而用Hive对HBase 中的数据进行批量分析。


ref:http://cloud.watchstor.com/storage-140703.htm

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-312917-1-1.html 上篇帖子: Hadoop Map&Reduce个数优化设置以及JVM重用 下篇帖子: Hadoop World 大会上的文章选摘(一)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表