设为首页 收藏本站
查看: 840|回复: 0

[经验分享] Apache Hadoop 0.23 MapReduce 2.0 (MRv2 or YARN) 介绍

[复制链接]

尚未签到

发表于 2016-12-13 09:07:15 | 显示全部楼层 |阅读模式
  MapReduce 在hadoop 0.23版本中经历了一次大修改。现在叫做MapReduce 2.0 (MRv2) 或者 YARN。
  JobTracker在MRv2 中被拆分成了两个主要的功能使用守护进程执行:资源管理和任务的调度与监视。这个想法创建一个全局的资源管理(global ResourceManager (RM))和为每个应用创建一个应用管理(ApplicationMaster (AM))。一个应用可以使一个MR jobs的经典场景或者是一串连续的jobs。
  ResourceManager 和每个slave节点的NodeManager (NM)构成一个资源估算框架。ResourceManager 对在系统中所有应用的资源分配拥有最终的最高级别仲裁权。
  实际上每个应用的ApplicationMaster(AM)是资源估算框架具体用到的lib包,被用来和ResourceManager 进行资源谈判,并且为NodeManager执行和监控task。

  ResourceManager 拥有两个主要的组件:调度器(Scheduler) 和资源管理器(ApplicationsManager)
  调度器负责为正在执行的各种各样的熟悉容量约束和队列的 applications subject 分配资源。感觉上调度器只是纯粹的调度程序而并不去监视和追踪application执行的状态。所以它并不会去重启失败的任务或处理失败的application或者是硬件错误引起的问题。调度器的调度程序是基于application要求的资源来执行的。调度器也不会基于一个资源容器(内存,CPU,硬盘,网络带宽)的概念来调度,在目前的版本里,它只是基于内存的调度。
  调度器支持可插拔的策略负责对集群中各种各样的队列和应用进行资源分配。在当前版本中Map-Reduce的调度器,例如CapacityScheduler 和 FairScheduler 是一些可插拔的例子。
  CapacityScheduler 支持hierarchical queues,所以它可以根据预判来分配集群资源。
  ApplicationsManager 负责接收 job-submissions,与第一个container谈判用哪个ApplicationMaster 来执行application ,为失败的ApplicationMaster  container提供重启服务。
  NodeManager 是每个节点的代理对container负责,监控它们的资源使用情况(内存,CPU,硬盘,网络带宽),给 ResourceManager/Scheduler提交报告。
  每个应用的ApplicationMaster 负责与调度器谈判资源占用的containers数量,追踪状态和监控进程。
  MRV2 与 之前版本(hadoop-0.20.205)保持兼容。这意味着所有的job只需要重新编译而不做任何修改就可以在MRv2 上运行。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-313555-1-1.html 上篇帖子: Hadoop YARN中内存和CPU两种资源的调度和隔离 下篇帖子: 异步机制(Asynchronous) -- (二)异步消息机制兼谈Hadoop RPC
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表