设为首页 收藏本站
查看: 843|回复: 0

[经验分享] 大数据框架hadoop的作业初始化过程(接上编)

[复制链接]

尚未签到

发表于 2016-12-13 09:25:31 | 显示全部楼层 |阅读模式
    本文接上一编文章《大数据框架hadoop的作业提交过程》。调度器调用JobTracker.initJob()函数对新作业进行初始化。相关代码如下:
// 调度器调用eagerTaskInitializationListener.start()方法。

class JobQueueTaskScheduler extends TaskScheduler { 

 @Override

  public synchronized void start() throws IOException {

super.start();

... ...

eagerTaskInitializationListener.start();
... ...
}
}
// EagerTaskInitializationListener.start()方法启动作业管理器线程。
class EagerTaskInitializationListener extends JobInProgressListener {
  ... ...
  public void start() throws IOException {

    this.jobInitManagerThread = new Thread(jobInitManager"jobInitManager");

    ... ...

    this.jobInitManagerThread.start();

  }
  ... ...
}
// 作业初始化管理器执行作业初始化动作
class JobInitManager implements Runnable {

    public void run() {

      ... ...

      threadPool.execute(new InitJob(job));

      ... ...

    }

}
作业初始化的主要工作是构造Map TaskReduce Task并对它们进行初始化。
Hadoop将每个作业分解成4种类型的任务,分别是Setup TaskMap TaskReduce TaskCleanup Task。它们的运行时信息由TaskInProgress类维护,因此,创建这些任务实际上是创建TaskInProgress对象。
上述4种任务的作用及创建过程如下。
Setup Task:作业初始化标识性任务。它进行一些非常简单的作业初始化工作,比如将运行状态设置为“setup”,调用OutputCommitter.setupJob()函数等。该任务运行完后,作业由PREP状态变为RUNNING状态,并开始运行Map Task。该类型任务又被分为Map Setup TaskReduce Setup Task两种,且每个作业各有一个。它们运行时分别占用一个Map slotReduce slot。由于这两种任务功能相同,因此有且只有一个可以获得运行的机会(即只要有一个开始运行,另一个马上被杀掉,而具体哪一个能够运行,取决于当时存在的空闲slot种类及调度策略。相关代码如下:
public class JobInProgress {
  TaskInProgress setup[] = new TaskInProgress[0];
  ... ...
  public synchronized void initTasks() {
    ... ...
    // create two setup tips, one map and one reduce.

    setup = new TaskInProgress[2];

    // setup map tip. This map doesn't use any split. Just assign an empty

    // split.

    setup[0] = new TaskInProgress(jobIdjobFileemptySplit

            jobtrackerconfthisnumMapTasks + 1, 1);

    setup[0].setJobSetupTask();

    // setup reduce tip.

    setup[1] = new TaskInProgress(jobIdjobFilenumMapTasks,

                       numReduceTasks + 1, jobtrackerconfthis, 1);

setup[1].setJobSetupTask();
... ...
  }
}
 
Map Task:Map阶段处理数据的任务。其数目及对应的处理数据分片由应用程序中的
InputFormat组件确定。关代码如下:
public class JobInProgress {
  TaskInProgress maps[] = new TaskInProgress[0];
  ... ...
  public synchronized void initTasks() {
    // read input splits and create a map per a split

TaskSplitMetaInfo[] splits = createSplits(jobId);
numMapTasks = splits.length;
    ... ...

    maps = new TaskInProgress[numMapTasks];

    for(int i=0; i < numMapTasks; ++i) {

      inputLength += splits[i].getInputDataLength();

      maps[i] = new TaskInProgress(jobIdjobFilesplits[i], 

                                   jobtrackerconfthisinumSlotsPerMap);

}
... ...
  }
}
Reduce Task:Reduce阶段处理数据的任务。其数目由用户通过参数mapred.reduce.tasks(默认数目为1)指定。考虑到Reduce Task能否运行依赖于Map Task的输出结果,因此,Hadoop刚开始只会调度Map Task,直到Map Task完成数目达到一定比例(由参数mapred.reduce.slowstart.completed.maps指定,默认是0.05,即5%)后,才开始调度Reduce Task。关代码如下:
public class JobInProgress {
  TaskInProgress reduces[] = new TaskInProgress[0];

  ... ...
  public synchronized void initTasks() {
    ... ...
    // Create reduce tasks

    this.reduces = new TaskInProgress[numReduceTasks];

    for (int i = 0; i < numReduceTasksi++) {

      reduces[i] = new TaskInProgress(jobIdjobFile, numMapTasksi

        jobtrackerconfthisnumSlotsPerReduce);

      nonRunningReduces.add(reduces[i]);

}
... ...
}
Cleanup Task:作业结束标志性任务,主要完成一些清理工作,比如删除作业运行过程中用到的一些临时目录(比如_temporary目录)。一旦该任务运行成功后,作业由RUNNING状态变为SUCCESSED状态。关代码如下:
public class JobInProgress {

  TaskInProgress cleanup[] = new TaskInProgress[0];

  ... ...
  public synchronized void initTasks() {
    ... ...
    // create cleanup two cleanup tips, one map and one reduce.

    cleanup = new TaskInProgress[2];

    // cleanup map tip. This map doesn't use any splits. Just assign an empty

    // split.

    TaskSplitMetaInfo emptySplit = JobSplit.EMPTY_TASK_SPLIT;

    cleanup[0] = new TaskInProgress(jobIdjobFileemptySplit

            jobtrackerconfthisnumMapTasks, 1);

    cleanup[0].setJobCleanupTask();

    // cleanup reduce tip.

    cleanup[1] = new TaskInProgress(jobIdjobFilenumMapTasks,

                       numReduceTasksjobtrackerconfthis, 1);

cleanup[1].setJobCleanupTask();

... ...

}
 

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-313582-1-1.html 上篇帖子: hadoop作业map过程调优使用到的参数笔记 下篇帖子: Hadoop 客户端长期运行造成Datanode 连接泄露, 0.21.0 仍然存在这问题
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表