设为首页 收藏本站
查看: 950|回复: 0

[经验分享] Solr scalability improvements

[复制链接]

尚未签到

发表于 2016-12-15 07:43:35 | 显示全部楼层 |阅读模式
http://yonik.wordpress.com/

With CPU cores constantly increasing, there has been some major work done in Lucene/Solr to increase the scalability under multi-threaded load.
Read-only IndexReaders

One bottleneck was synchronization around the checking of deleted docs in a Lucene IndexReader.  Since another thread could delete a document at any time, the IndexReader.isDeleted() call was synchronized.  It’s a very quick call, simply checking if a bit is set in a BitVector, but the problem was that it can be called millions of times in the process of satisfying a single query. The Read-only IndexReader feature allowed for the removal of this synchronization by prohibiting deletion.
Use of NIO to read index files

The standard method for Lucene to read index files is via Java’s RandomAccessFile.  Reading a part of the file involves two calls, a seek() to position the file pointer followed by a read() to get the data.  For multiple threads to share the same RandomAccessFile instance, this obviously involves synchronization to avoid one thread changing the file pointer before another thread gets to read at the file position it set.   If the data to be read isn’t in the operating system cache, it’s even worse news… the synchronization causes all other reads to block while the data is retrieved from disk, even if some of those reads could have been quickly satisified.

The preferred solution would be to have a method on RandomAccessFile that accepted an offset to read from.  This could easily be implemented by the JVM via a pread() system call.  But since Sun has not provided this functionality, we need to use something else.  NIO’s FileChannel does have the type of method we are looking for:  FileChannel.read(ByteBuffer dst, long position)

Solr now uses the non-synchronizing NIO method of reading index files (via Lucene’s NIOFSDirectory) by default if you are on a non-Windows platform.  Windows systems default to the older method since it turns out to be faster than the new method - the reason being a long standing “bug” in Java that still synchronizes internally even when using FileChannel.read().
Non blocking caches

Solr’s standard LRU cache implementation use a synchronized LinkedHashMap.  A single cache could be checked hundreds or thousands of times during the course of a single request that involves faceting.  A non-blocking ConcurrentLRUCache was developed as an alternative implementation, and is now the default for Solr’s filter cache.  One user indicated that this has doubled their query throughput under ideal circumstances.
Where to find this scalability goodness?

Solr 1.3 has read-only IndexReaders, but for the other scalability improvements, including the improved faceting, you’ll have to grab a nightly Solr build.

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-314363-1-1.html 上篇帖子: solr环境配置、中文分词、数据库 下篇帖子: solr学习小结
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表