tar -zxvf spark-1.4.0.tgz
cd spark-1.4.0
./sbt/sbt assembly
ps:如果之前执行过编译,需要执行 ./sbt/sbt clean 清理后才能重新编译。 三、运行
adeMacBook-Pro:spark-1.4.0 apple$ ./bin/spark-shell
log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
15/06/14 11:32:25 INFO SecurityManager: Changing view acls to: apple
15/06/14 11:32:25 INFO SecurityManager: Changing modify acls to: apple
15/06/14 11:32:25 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(apple); users with modify permissions: Set(apple)
15/06/14 11:32:25 INFO HttpServer: Starting HTTP Server
15/06/14 11:32:26 INFO Server: jetty-8.y.z-SNAPSHOT
15/06/14 11:32:26 INFO AbstractConnector: Started SocketConnector@0.0.0.0:61566
15/06/14 11:32:26 INFO Utils: Successfully started service 'HTTP class server' on port 61566.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 1.4.0
/_/
Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_71)
Type in expressions to have them evaluated.
Type :help for more information.
15/06/14 11:32:31 INFO SparkContext: Running Spark version 1.4.0
15/06/14 11:32:31 INFO SecurityManager: Changing view acls to: apple
15/06/14 11:32:31 INFO SecurityManager: Changing modify acls to: apple
15/06/14 11:32:31 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(apple); users with modify permissions: Set(apple)
15/06/14 11:32:31 INFO Slf4jLogger: Slf4jLogger started
15/06/14 11:32:31 INFO Remoting: Starting remoting
15/06/14 11:32:32 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@192.168.1.106:61567]
15/06/14 11:32:32 INFO Utils: Successfully started service 'sparkDriver' on port 61567.
15/06/14 11:32:32 INFO SparkEnv: Registering MapOutputTracker
15/06/14 11:32:32 INFO SparkEnv: Registering BlockManagerMaster
15/06/14 11:32:32 INFO DiskBlockManager: Created local directory at /private/var/folders/s3/llfgz_mx47572r5b4pbk7xm80000gp/T/spark-cf6feb6b-1464-4d54-89f3-8d97bf15205f/blockmgr-b8410cda-aa29-4069-9406-d6155512cd53
15/06/14 11:32:32 INFO MemoryStore: MemoryStore started with capacity 265.4 MB
15/06/14 11:32:32 INFO HttpFileServer: HTTP File server directory is /private/var/folders/s3/llfgz_mx47572r5b4pbk7xm80000gp/T/spark-cf6feb6b-1464-4d54-89f3-8d97bf15205f/httpd-a1838f08-2ccd-42d2-9419-6e91cb6fdfad
15/06/14 11:32:32 INFO HttpServer: Starting HTTP Server
15/06/14 11:32:32 INFO Server: jetty-8.y.z-SNAPSHOT
15/06/14 11:32:32 INFO AbstractConnector: Started SocketConnector@0.0.0.0:61568
15/06/14 11:32:32 INFO Utils: Successfully started service 'HTTP file server' on port 61568.
15/06/14 11:32:32 INFO SparkEnv: Registering OutputCommitCoordinator
15/06/14 11:32:32 INFO Server: jetty-8.y.z-SNAPSHOT
15/06/14 11:32:32 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
15/06/14 11:32:32 INFO Utils: Successfully started service 'SparkUI' on port 4040.
15/06/14 11:32:32 INFO SparkUI: Started SparkUI at http://192.168.1.106:4040
15/06/14 11:32:32 INFO Executor: Starting executor ID driver on host localhost
15/06/14 11:32:32 INFO Executor: Using REPL class URI: http://192.168.1.106:61566
15/06/14 11:32:32 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 61569.
15/06/14 11:32:32 INFO NettyBlockTransferService: Server created on 61569
15/06/14 11:32:32 INFO BlockManagerMaster: Trying to register BlockManager
15/06/14 11:32:32 INFO BlockManagerMasterEndpoint: Registering block manager localhost:61569 with 265.4 MB RAM, BlockManagerId(driver, localhost, 61569)
15/06/14 11:32:32 INFO BlockManagerMaster: Registered BlockManager
15/06/14 11:32:33 INFO SparkILoop: Created spark context..
Spark context available as sc.
15/06/14 11:32:33 INFO SparkILoop: Created sql context..
SQL context available as sqlContext.
scala>
参考:
https://spark.apache.org/docs/latest/ 三、使用spark交互模式
1. 运行./spark-shell.sh
2. scala> val data = Array(1, 2, 3, 4, 5) //产生data