y(l)(x)是prediction function。 Bayesian Linear Regression(该段摘自Jian Xiao(iamxiaojian@gmail.com)的笔记Notes on Pattern Recognition and Machine Learning (Bishop))
Bayesian 方法能够避免 over-fitting 的原因是: Marginalizing over the model parameters instead of making point estimates of their values.
假设有多个 model;观察到的 data set 是 D。 Bayesian 的 model comparison 方法是,比较各个模型的后验概率,即:
先验概率 p(Mi) allows us to express a preference for different model。可以假设每个模型的先验概率相等,那么剩下要比较的关键是: p(D|Mi) ——model evidence 或 marginal likelihood。
Model averaging V.S. model selection
Model averaging:把多个模型,用各自模型的后验概率加权平均,得到 predictive distribution为
Model selection: 只选择一个模型,即其中后验概率最大的模型。这是一种 approximation to model averaging。以上分析可以看出,各个 model 的后验概率是关键,而计算后验概率的关键又是 model evidence。
从 sampling 的角度看, Mi 相当于 hyper-parameter,而 w 则是 parameter。 一个 model 不同于另一个 model,是因为 hyper-parameter。 The Evidence Approximation
full Bayesian需要marginalize with respect to hyper-parameters as well as parameters,例如hyperparameter是alpha和beta,w是parameter,那么predictive distribution为:
就比较难,这里就考虑一种approximation,给hyperparameters设置一个特定的数值,这个数值由maximizing the marginal likelihood function 来确定。这个方法叫empirical Bayes、 type 2 maximum likelihood、generalized maximum likelihood、evidence approximation(in machine learning)
Previous Chapter | Next Chapter