设为首页 收藏本站
查看: 674|回复: 0

[经验分享] 一条SQL搞定信息增益的计算

[复制链接]

尚未签到

发表于 2017-7-14 14:24:07 | 显示全部楼层 |阅读模式
  欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~

  周东谕,2011年加入腾讯,现任职于腾讯互娱运营部数据中心,主要从事游戏相关的数据分析和挖掘工作。


信息增益原理介绍
  介绍信息增益之前,首先需要介绍一下熵的概念,这是一个物理学概念,表示“一个系统的混乱程度”。系统的不确定性越高,熵就越大。假设集合中的变量X={x1,x2…xn},它对应在集合的概率分别是P={p1,p2…pn}。那么这个集合的熵表示为:

  举一个的例子:对游戏活跃用户进行分层,分为高活跃、中活跃、低活跃,游戏A按照这个方式划分,用户比例分别为20%,30%,50%。游戏B按照这种方式划分,用户比例分别为5%,5%,90%。那么游戏A对于这种划分方式的熵为:

  同理游戏B对于这种划分方式的熵为:

  游戏A的熵比游戏B的熵大,所以游戏A的不确定性比游戏B高。用简单通俗的话来讲,游戏B要不就在上升期,要不就在衰退期,它的未来已经很确定了,所以熵低。而游戏A的未来有更多的不确定性,它的熵更高。
  介绍完熵的概念,我们继续看信息增益。为了便于理解,我们还是以一个实际的例子来说明信息增益的概念。假设有下表样本

  第一列为QQ,第二列为性别,第三列为活跃度,最后一列用户是否流失。我们要解决一个问题:性别和活跃度两个特征,哪个对用户流失影响更大?我们通过计算信息熵可以解决这个问题。
  按照分组统计,我们可以得到如下信息:

  其中Positive为正样本(已流失),Negative为负样本(未流失),下面的数值为不同划分下对应的人数。那么可得到三个熵:
  整体熵:

  性别熵:


  性别信息增益:

  同理计算活跃度熵:

  活跃度信息增益:

  活跃度的信息增益比性别的信息增益大,也就是说,活跃度对用户流失的影响比性别大。在做特征选择或者数据分析的时候,我们应该重点考察活跃度这个指标。

使用Hive SQL实现信息熵的计算
  从表2中我们不难发现,在计算信息熵和信息增益之前,需要对各维度做汇总计数,计算各公式中出现的分母。Hive SQL中,cube能帮助我们很快的做汇总计算,话不多说直接上代码:


SELECT
t1.feature_name,
SUM((ea_all/es)*EA) as gain,
SUM(NVL(-(ea_all/ES)*log2(ea_all/es),0)) as info,--计算信息增益率的分母
SUM((ea_all/es)*EA)/SUM(NVL(-(ea_all/es)*log2(ea_all/es),0)) as gain_rate--信息增益率计算
FROM
(
SELECT
feature_name,
feature_value,
ea_all,
--Key Step2 对于整体熵,要记得更换符号,NVL的出现是防止计算log2(0)得NULL
case
when feature_value='-100' then -(NVL((ea_positive/ea_all)*log2(ea_positive/ea_all),0)+NVL((ea_negative/ea_all)*log2(ea_negative/ea_all),0))
else (NVL((ea_positive/ea_all)*log2(ea_positive/ea_all),0)+NVL((ea_negative/ea_all)*log2(ea_negative/ea_all),0))
end as EA
FROM
(
SELECT
feature_name,
feature_value,
SUM(case when is_lost=-100 then user_cnt else 0 end) as ea_all,
SUM(case when is_lost=1 then user_cnt else 0 end) as ea_positive,
SUM(case when is_lost=0 then user_cnt else 0 end) as ea_negative
FROM
(
SELECT
feature_name,
--Key Step1 对feature值和label值做汇总统计,1、用于熵计算的分母,2、计算整体熵情况
case when grouping(feature_value)=1 then '-100' else feature_value end as feature_value,
case when grouping(is_lost)=1 then -100 else is_lost end as is_lost,
COUNT(1) as user_cnt
FROM
(               
SELECT feature_name,feature_value,is_lost FROM gain_caculate
)GROUP BY feature_name,cube(feature_value,is_lost)
)GROUP BY feature_name,feature_value
)
)t1 join
(
--Key Step3信息增益计算时,需要给出样本总量作为分母
SELECT feature_name,COUNT(1) as es FROM gain_caculate
GROUP BY feature_name
)t2 on t1.feature_name=t2.feature_name
GROUP BY t1.feature_name

  数据表结构如下:

  关键步骤说明:
  KeyStep1:各特征的熵计算

  KeyStep2:各feature下的信息增熵

  信息增益计算结果:


结束语:
  以上为信息熵计算过程的SQL版本,其关键点在于使用cube实现了feature和label所需要的汇总计算。需要的同学只需要按照规定的表结构填入数据,修改SQL代码即可计算信息增益。文中如有不足的地方,还请各位指正。

参考文档
  [1] 算法杂货铺——分类算法之决策树(Decision tree)
  http://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html
  [2] c4.5为什么使用信息增益比来选择特征?
  https://www.zhihu.com/question/22928442

相关推荐
  一条SQL搞定卡方检验计算
【腾讯云的1001种玩法】自建SQL Server迁移云SQL Server过程小记
小菜鸟对周志华大神gcForest的理解

  此文已由作者授权腾讯云技术社区发布,转载请注明文章出处
原文链接:https://www.qcloud.com/community/article/826876001491038171
获取更多腾讯海量技术实践干货,欢迎大家前往腾讯云技术社区

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-393787-1-1.html 上篇帖子: In-Memory:内存数据库 下篇帖子: SQL Server2016升级前几点自检
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表