设为首页 收藏本站
查看: 1099|回复: 0

[经验分享] spark和hadoop差异

[复制链接]

尚未签到

发表于 2017-12-18 07:15:11 | 显示全部楼层 |阅读模式
  spark是从mapreduce发展过来的,拥有分布式并行计算的能力
  运行效率高:
  spark是把中间数据放到内存中,并且spark支持DAG图的分布式并行计算的编程框架,减少了迭代过程中数据的落地,提高了处理效率。
  而mapreduce的计算结果是保存在磁盘上的,这势必会影响整体速度。
  容错性高:
  spark引进了弹性分布式数据集RDD的抽象,它是分布在一组节点中的只读对象集合,这些集合是弹性的,如果数据集一部分丢失,则可以根据血统(即允许基于数据衍生过程)对它们进行重建。另外RDD计算时可以通过checkpoint来实现容错,而checkpoint有两种方式:CheckPoint Data 和 Logging The Updates, 用户可以控制采用哪种方式来实现容错。
  更加通用:
  spark不像hadoop那样只提供了map和reduce两种操作,spark提供的数据集操作类型有很多种,大致分为:Transformations和Actions两大类。另外各个处理节点之间的通信模型不再像hadoop只提供shuffle一种模型,用户可以命名、物化、控制中间结果的存储、分区等。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-425243-1-1.html 上篇帖子: Kudu:支持快速分析的新型Hadoop存储系统 下篇帖子: GreenPlum 与hadoop什么关系?(转)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表