设为首页 收藏本站
查看: 1686|回复: 0

[经验分享] 想高效学会Hadoop,你要按照这个路线

[复制链接]

尚未签到

发表于 2017-12-18 09:01:08 | 显示全部楼层 |阅读模式
  学习hadoop,首先我们要知道hadoop是什么?
  说到底Hadoop只是一项分布式系统的工具,我们在学习的时候要理解分布式系统设计中的原则以及方法,只有这样才能以不变应万变。再一个就是一定要动手,有什么案例,有什么项目一定要亲自动手去敲。
  学习的时候不要害怕遇到问题,问题是最好的老师。其实学习的过程就是逐渐解决问题的过程,当你遇到的问题越来越少的时候,就说明已经学的差不多了。
  下面说一下hadoop的学习路线。
  1.我们要掌握Linux的安装及基本操作、Python安装及编程基础、java基础。
  需要学习Linux的常用命令、基本网络配置、进程管理、shell语法;Python的常用语法,能够基于Python搭建一个常用的Server服务器和java的基础知识。
  这时候只需要掌握基础即可,后边遇到问题再学习,这样才不会混乱,学的才扎实。
  2. 搭建Hadoop分布式环境
  我们要做的是在自己的电脑上安装Linux,然后准备环境nat配置,搭建Hadoop集群先让Hadoop在自己的电脑上跑起来。使用VMware来搭建。
  这时候我们会Host配置、IP配置、SSH免密登录等。
  3.学习HDFS分布式文件系统
  这一步要学习架构分析、容灾容错策略、local数据策略、数据块概念、机架感应,功能逻辑实现等。要真正的去敲敲,掌握Linux下HDFS Shell常用命令的使用。
  4.学习MapReduce计算框架
  MapReduce是Hadoop核心编程模型。在Hadoop中,数据处理核心就是MapReduce程序设计模型。这一步需要学的东西很多,大家一定要有耐心,把MR的知识学牢固。
  首先我们需要学习MR的基本原理、任务执行流程、Shuffle策略。自己动手写一个MR任务,来实现wordcount。然后要学习表单join、表单查询、数据清洗、全局排序、多目录输入输出、自定义partition分区,掌握二分法算法。
  接下来学习自然语言处理方法(NLP),掌握如何提取关键词,TF-IDF算法。这里我们可以实践一下,统计文本中的词频。
  学习中文分词,分词的质量直接影响数据挖掘的质量。
  5.学习Strom流式计算
  Storm是一个开源分布式实时计算系统,它可以实时可靠地处理流数据。
  这一步我们要知道Hadoop和Storm的区别,知道他们如何进行互补。了解Storm的体系架构、Zookeeper在架构中的作用和数据流处理的过程。弄懂Storm的工作原理和核心组件(Spout、Bolt)
  6.学习Zookeeper分布式协作服务
  这一步我们学会数据管理的树形结构,学会根据应用场景选择不同类型的节点、节点权限管理ACL和监控机制。学会Zookeeper开源自带Client工具的Shell使用,开发java代码实现不同类型的节点进行新建、修改、删除和节点的监控。
  7.学习数据仓库工具Hive
  这一步要了解Hive的体系架构和其与mysql的对比。要掌握Mysql的基本知识、系统搭建标准SQL语(增删查改)。
  8.学习分布式存储系统Hbase
  这一步要掌握Hbase的体系架构(HMaster、HRegionServer、HStore、HFile、HLog),物理存储、数据逻辑存储、核心功能模块。
  细化一点要掌握Hbase表结构设计、Shell操作(增删查改)、javaAPI操作、数据迁移、备份与恢复。与MR结合实现批量导入与导出,与Hive结合使用,集群管理和性能调优。
  9.学习Spark
  这一步要掌握SPark的编程模型、运行框架、作业提交、缓存策略、RDD、MLLib。
  10.学习Scala语言
  这一步要掌握Scala的常用语法、函数、元组等操作,不熟Spark。
  11.学习Spark开发技术
  这一步要能够熟练使用MLLib,能够自己开发Scala的Spark任务,完成表格join、连接和文本串过滤等。
  12.学习推荐系统
  前面我们学了那么多,最终所学的技术要能落地,我学的是现在主流的推荐系统,现在各大公司都需要这方面的人才。
  这一步我们可以找一些案例在学习,要掌握主流的推荐算法,Content Base、Collab Filter。
  a.学习基于MR的协同过滤算法
  b.学习Mahout,掌握Mahout的适用场景、环境搭建与部署。
  学习基于Mahout的协同过滤算法,与MR进行效果对比。
  C.学习基于Spark的协同过滤算法
  到这里,按照上边的路线认真学习,肯定能学好hadoop开发,在学习的时候一定要亲自动手去敲,要去不断的尝试,把看到的知识尽快转化为自己的技能,这样才能高效率的学会hadoop,学任何一门技术都是一样,需要实际动手。
  最后送给大家一套hadoop视频,授课老师是百度的hadoop核心架构师,经常在一些上市公司做内训,有很强的专业技能和授课能力。
  这套视频主要内容包括Hadoop入门、Hadoop生态架构和Hadoop大型商业项目的讲解。这三块细化来看就是我文章中提到的那个学习顺序。老师讲的很细,MR就讲了15个小时,毕竟这是Hadoop中的重点。
  想要视频的同学可以加微信ganshiyu1026,备注 OSC 即可免费领取。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-425277-1-1.html 上篇帖子: Hadoop分布式环境搭建:使用阿里云服务器构建(1) 下篇帖子: windows下搭建hadoop-2.6.0本地idea开发环境
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表