设为首页 收藏本站
查看: 762|回复: 0

[经验分享] Python的线程

[复制链接]

尚未签到

发表于 2018-8-4 13:15:24 | 显示全部楼层 |阅读模式
  本文是基于Py2.X


线程
  多任务可以由多进程完成,也可以由一个进程内的多线程完成。
  我们前面提到了进程是由若干线程组成的,一个进程至少有一个线程。
  多线程类似于同时执行多个不同程序,多线程运行有如下优点:


  • 可以把运行时间长的任务放到后台去处理。
  • 用户界面可以更加吸引人,比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度。
  • 程序的运行速度可能加快。
  • 在一些需要等待的任务实现上,如用户输人、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源,如内存占用等。
  Python的标准库提供了两个模块: thread 和threading,thread 是低级模块,threading是高级模块,对thread 进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

启动一个线程就是把一个函数传入并创建Thread实例,然后调用start()开始执行:
  

# -*- coding:utf-8 -*-  
import time, threading
  

  
# 新线程执行的代码:
  
def loop():
  print 'thread %s is running...' % threading.current_thread().name
  n = 0
  while n < 5:
  n = n + 1
  print 'thread %s >>> %s' % (threading.current_thread().name, n)
  time.sleep(1)
  print 'thread %s ended.' % threading.current_thread().name
  

  
print 'thread %s is running...' % threading.current_thread().name
  
t = threading.Thread(target=loop, name='LoopThread')
  
t.start()
  
t.join()
  
print 'thread %s ended.' % threading.current_thread().name
  

  
得到:
  
thread MainThread is running...
  
thread LoopThread is running...
  
thread LoopThread >>> 1
  
thread LoopThread >>> 2
  
thread LoopThread >>> 3
  
thread LoopThread >>> 4
  
thread LoopThread >>> 5
  
thread LoopThread ended.
  
thread MainThread ended.
  

  由于任何进程默认就会启动一个线程,我们把该线程称为主线程,主线程又可以启动新的线程,Python的threading模块有个current_thread()函数,它永远返回当前线程的实例。主线程实例的名字叫MainThread,子线程的名字在创建时指定,我们用LoopThread命名子线程。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1,Thread-2……

Lock
  多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。
  

import time, threading  

  
# 假定这是你的银行存款:
  
balance = 0
  

  
def change_it(n):
  # 先存后取,结果应该为0:
  global balance
  balance = balance + n
  balance = balance - n
  

  
def run_thread(n):
  for i in range(100000):
  change_it(n)
  

  
t1 = threading.Thread(target=run_thread, args=(5,))
  
t2 = threading.Thread(target=run_thread, args=(8,))
  
t1.start()
  
t2.start()
  
t1.join()
  
t2.join()
  
print balance
  

  
得到:
  
46,
  
且每次运行结果都会不一样。
  

  

  我们定义了一个共享变量balance,初始值为0,并且启动两个线程,先存后取,理论上结果应该为0,但是,由于线程的调度是由操作系统决定的,当t1、t2交替执行时,只要循环次数足够多,balance的结果就不一定是0了。
  由于彼此间的交替运算,所以结果会发生变化,如果是在银行操作,一存一取就可能导致余额不对,所以必须确保一个线程在修改balance的时候,别的线程一定不能改。
  如果我们要确保balance计算正确,就要给change_it()上一把锁,当某个线程开始执行change_it()时,我们说,该线程因为获得了锁,因此其他线程不能同时执行change_it(),只能等待,直到锁被释放后,获得该锁以后才能改。由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。创建一个锁就是通过threading.Lock()来实现:
  修改后的代码:
  

# -*- coding:utf-8 -*-  
import time, threading
  

  
# 假定这是你的银行存款:
  
balance = 0
  

  
def change_it(n):
  # 先存后取,结果应该为0:
  global balance
  balance = balance + n
  balance = balance - n
  

  
lock = threading.Lock()
  

  
def run_thread(n):
  for i in range(100000):
  # 先要获取锁:
  lock.acquire()
  try:
  # 放心地改吧:
  change_it(n)
  finally:
  # 改完了一定要释放锁:
  lock.release()
  

  
t1 = threading.Thread(target=run_thread, args=(5,))
  
t2 = threading.Thread(target=run_thread, args=(8,))
  
t1.start()
  
t2.start()
  
t1.join()
  
t2.join()
  
print balance
  

  
结果,无论怎么执行都是0,这正是我们期望的结果。
  

  

  当多个线程同时执行lock.acquire()时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。
  获得锁的线程用完后一定要释放锁,否则那些苦苦等待锁的线程将永远等待下去,成为死线程。所以我们用try...finally来确保锁一定会被释放。
  锁的好处就是确保了某段关键代码只能由一个线程从头到尾完整地执行,坏处当然也很多,首先是阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。其次,由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁,导致多个线程全部挂起,既不能执行,也无法结束,只能靠操作系统强制终止。

全局解释器
  如果你不幸拥有一个多核CPU,你肯定在想,多核应该可以同时执行多个线程。
  在Python的原始解释器CPython中存在着GIL(Global Interpreter Lock,全局解释器锁)因此在解释执行Python代码时,会产生互斥锁来限制线程对共享资源的访问,直到解释器遇到I/O操作或者操作次数达到一定数据时支委会释放GIL。由于全局器锁的存在,在进行多线程操作的时候,不能调用多个CPU内核,只能利用一个内核,所以在进行CPU密集型操作的时候,不推荐使用多线程,更加倾向于多进程,那么多线程适合什么样的应用场景呢?对于IO密集型操作,多线程可以明显提高效率,例如Python爬虫的开发,绝大多数时间爬虫是在等待socket返回数据,网络IO操作延时比CPU大得多。

ThreadLocal
  在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁。
  但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦:
  

def process_student(name):  std = Student(name)
  # std是局部变量,但是每个函数都要用它,因此必须传进去:
  do_task_1(std)
  do_task_2(std)
  

  
def do_task_1(std):
  do_subtask_1(std)
  do_subtask_2(std)
  

  
def do_task_2(std):
  do_subtask_2(std)
  do_subtask_2(std)
  

  

  每个函数一层一层调用都这么传参数那还得了?用全局变量?也不行,因为每个线程处理不同的Student对象,不能共享。
  如果用一个全局dict存放所有的Student对象,然后以thread自身作为key获得线程对应的Student对象如何?
  

global_dict = {}  

  
def std_thread(name):
  std = Student(name)
  # 把std放到全局变量global_dict中:
  global_dict[threading.current_thread()] = std
  do_task_1()
  do_task_2()
  

  
def do_task_1():
  # 不传入std,而是根据当前线程查找:
  std = global_dict[threading.current_thread()]
  ...
  

  
def do_task_2():
  # 任何函数都可以查找出当前线程的std变量:
  std = global_dict[threading.current_thread()]
  ...
  

  

  这种方式理论上是可行的,它最大的优点是消除了std对象在每层函数中的传递问题,但是,每个函数获取std的代码有点丑。
  有没有更简单的方式?
  ThreadLocal应运而生,不用查找dict,ThreadLocal帮你自动做这件事:
  

import threading  

  
# 创建全局ThreadLocal对象:
  
local_school = threading.local()
  

  
def process_student():
  print 'Hello, %s (in %s)' % (local_school.student, threading.current_thread().name)
  

  
def process_thread(name):
  # 绑定ThreadLocal的student:
  local_school.student = name
  process_student()
  

  
t1 = threading.Thread(target= process_thread, args=('Alice',), name='Thread-A')
  
t2 = threading.Thread(target= process_thread, args=('Bob',), name='Thread-B')
  
t1.start()
  
t2.start()
  
t1.join()
  
t2.join()
  

  
得到:
  

  
Hello, Alice (in Thread-A)
  
Hello, Bob (in Thread-B)
  

  

  全局变量local_school就是一个ThreadLocal对象,每个Thread对它都可以读写student属性,但互不影响。你可以把local_school看成全局变量,但每个属性如local_school.student都是线程的局部变量,可以任意读写而互不干扰,也不用管理锁的问题,ThreadLocal内部会处理。
  可以理解为全局变量local_school是一个dict,不但可以用local_school.student,还可以绑定其他变量,如local_school.teacher等等。
  ThreadLocal最常用的地方就是为每个线程绑定一个数据库连接,HTTP请求,用户身份信息等,这样一个线程的所有调用到的处理函数都可以非常方便地访问这些资源。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-546513-1-1.html 上篇帖子: python 集合 下篇帖子: Python的了解
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表